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(Classical) Graphical Models

In a (classical) graphical model, a graph encodes conditional indepen-
dence statements between random variables represented by the nodes.
Example: the 3-chain graph

X Y Z

encodes the statement X ⊥⊥ Z ∣ Y . For binary random variables X,Y
and Z, this defines a statistical model described by the algebraic variety

MG = V(p001p100 − p000p101, p011p110 − p010p111) ⊆ P7
pijk.

Goal

Our goal is to associate algebraic varieties to quantum graphical models.
We propose three such varieties:

•Quantum conditional mutual information (QCMI) varieties

•Petz varieties
•Gibbs varieties from families of Hamiltonians

In each of these cases, one recovers the classical graphical model when
restricting to diagonal quantum states.

Hammersley–Clifford Theorem

•Classical [3]: A probability distribution p ≻ 0 satisfies the pairwise
Markov property on a graph G if and only if it factors as a product of
potential functions, each depending only on a clique of G:

p(x) = 1

Z
∏

C∈C(G)
ϕC(xC).

•Quantum [4]: Let G = (V,E) be a tree and let ρ ≻ 0 be a quantum
state satisfying I(vi ∶ vk ∣ vj) = 0 for all (vi, vj, vk) ∈ V 3 such that vj
separates vi from vk in G. Then ρ is the exponential of a sum of local
commuting Hamiltonians:

ρ = exp(H) with H = ∑
C∈C(G)

hC, [hC, hC ′] = 0 ∀C,C ′ ∈ C(G).

Gibbs Varieties from Hamiltonians

•Definition. Let X ⊆ Sn be a unirational variety of n×n symmetric
matrices. Its Gibbs manifold is GM(X) ∶= exp(X), the Gibbs vari-
ety GV(X) is the Zariski closure GV(X) ∶= GM(X) ⊆ Sn.

• In general, sums of local commuting Hamiltonians do not form a
unirational variety. However, one can consider suitable subsets, e.g.
sums of local decomposable tensors XG ∶= ∑C∈C(G)XC.

Quantum Information Projection

• Let Q be a family of quantum states. Given an arbitrary state ρ,
what is the state ρ̃ ∈ Q“closest” to ρ? (Analogue of MLE)

Definition. The quantum relative entropy is

D(ρ∣∣σ) ∶= { tr(ρ(log(ρ) − log(σ))) if supp(ρ) ⊆ supp(σ)
+∞ otherwise.

Definition. The quantum information projection of ρ to Q is

ρ̃ ∶= argmin
ρ′∈Q

D(ρ∣∣ρ′).

Theorem. Let H = ⟨H1, . . . ,Hk⟩ ⊆ SdR be a span of commuting
Hamiltonians, fix ρ ∈ SdR, ρ ≻ 0, and let bi ∶= tr(Hiρ) for i = 1, . . . , k.
Let Mρ ∶= {A ∈ SdR ∣ ⟨Hi,A⟩ = bi for i = 1, . . . , k}.
ThenMρ∩GM(H) consists of a unique point ρ∗. It is the maximiser
of the von Neumann entropy insideMρ and the quantum information
projection of ρ to GM(H). (Analogue of Birch’s Theorem)

Quantum Information Theory Basics

•A quantum state on N qudits is represented by a unit length vector ∣ψ⟩ ∈ H1 ⊗ ⋅ ⋅ ⋅ ⊗HN , Hi ≅ Cd.

•An ensemble of quantum states is a collection {pi, ∣ψi⟩}i, where {pi}i is a discrete probability distribution. It
is described by its density matrix

ρ =∑
i

pi∣ψi⟩⟨ψi∣ ∈ End(H1 ⊗ ⋅ ⋅ ⋅ ⊗HN).

We think of quantum states as real positive-semidefinite matrices with trace one.

•The partial trace is an operation to obtain the state of a subsystem from the state of a multipartite system,
analogous to marginalisation in statistics. For a bipartite state ρAB on HA⊗HB, it is defined on elementary
tensors via

trB(∣ai⟩⟨aj∣⊗ ∣bk⟩⟨bl∣) ∶= ∣ai⟩⟨aj∣ ⋅ tr(∣bk⟩⟨bl∣) = ∣ai⟩⟨aj∣ ⋅ ⟨bl ∣ bk⟩
and is extended linearly. We write ρA ∶= trB ρAB; this is a quantum state on HA.

Quantum Conditional Mutual Information Variety

•Definition. The von Neumann entropy S(ρ) of a quantum state ρ is S(ρ) ∶= − tr(ρ log ρ).
•Definition. For a tripartite state ρABC, the quantum conditional mutual information (QCMI) between A
and C given B is

I(A∶C ∣ B) ∶= S(ρAB) + S(ρBC) − S(ρABC) − S(ρB).
The vanishing I(A∶C ∣ B) = 0 is analogous to classical conditional independence A ⊥⊥ C ∣ B.

•Theorem [2]. A state ρABC satisfies I(A∶C ∣ B) = 0 if and only if it admits a factorisation

ρABC = ΛABΛBC with [ΛAB,ΛBC] = 0,
where ΛAB,ΛBC are symmetric matrices acting nontrivially only on HA ⊗HB resp. HB ⊗HC.

Construction. Let G = (V = {S1, . . . , SN},E) be a tree.

• For each triple of vertices (Si, Sj, Sk) such that Sj separates Si and Sk in G, impose the QCMI statement

trV ∖{Si,Sj,Sk} ρV = ΛSiSjΛSjSk with [ΛSiSj,ΛSjSk] = 0.
• For any two QCMI statements I(Si ∶ Sk ∣ Sj) = I(Si′ ∶ Sk′ ∣ Sj′) = 0, impose compatibility constraints

trT ∖(T ∩T ′) ρT = trT ′∖(T ∩T ′) ρT ′ where T = (Si, Sj, Sk), T ′ = (Si′, Sj′, Sk′).
•Via elimination of the Λ parameters, this gives rise to a variety, the QCMI variety.

Petz Variety

•The Petz recovery map for the 3-chain graph is

R(ρAB, ρBC) = (ρ1/2AB ⊗ IdC)(IdA ⊗ ρ−1/2B ⊗ IdC)(IdA ⊗ ρBC)(IdA ⊗ ρ−1/2B ⊗ IdC)(ρ1/2AB ⊗ IdC);
it recovers a state ρABC satisfying I(A ∶ C ∣ B) = 0 from two compatible two-body marginals.

• Let V = {(X,Y,Z) ∈ S4R × S4R × S2R ∣ trA(X2) = trC(Y 2) = Z2}; then define the rational Petz map

R ∶ V S8R, (x, y, z)↦ (x⊗ IdC)(IdA ⊗ z−1 ⊗ IdC)(IdA ⊗ y)(IdA ⊗ z−1 ⊗ IdC)(x⊗ IdC).
•This map can be generalised to arbitrary trees G by iteratively applying the procedure for 3-chains of G.

•Definition. The Petz variety is the Zariski closure of R. It is an irreducible variety.

Example: 3-chain Graph

Let G be the 3-chain graph and consider the qubit case, i.e. Hi ≅ C2 for i = 1, 2, 3.
•The QCMI variety of G is an irreducible, 12-dimensional variety inside S8 of degree 110, cut out by 735
equations in degrees one to five.

• For XG = {K ⊗L⊗ Id2+ Id2⊗M ⊗N ∣K,L,M,N ∈ S2}, the Gibbs variety GV(XG) ⊆ S8 is an irreducible,
14-dimensional variety cut out by nine linear forms and 66 quadratic equations with coefficients ±1.
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