# Algebraic Geometry of Quantum Graphical Models 

Eliana Duarte, Dmitrii Pavlov, Maximilian Wiesmann<br>Max-Planck-Institute for Mathematics in the Sciences, Leipzig, Germany<br>wiesmann@mis.mpg.de

## (Classical) Graphical Models

In a (classical) graphical model, a graph encodes conditional independence statements between random variables represented by the nodes. Example: the 3-chain graph

encodes the statement $X \Perp Z \mid Y$. For binary random variables $X, Y$ and $Z$, this defines a statistical model described by the algebraic variety $\mathcal{M}_{G}=\mathcal{V}\left(p_{001} p_{100}-p_{000} p_{101}, p_{011} p_{110}-p_{010} p_{111}\right) \subseteq \mathbb{P}_{p_{i j k}}^{7}$.

## Goal

Our goal is to associate algebraic varieties to quantum graphical models. We propose three such varieties:

- Quantum conditional mutual information (QCMI) varieties
- Petz varieties
- Gibbs varieties from families of Hamiltonians

In each of these cases, one recovers the classical graphical model when restricting to diagonal quantum states.

## Hammersley-Clifford Theorem

- Classical [3]: A probability distribution $p>0$ satisfies the pairwise Markov property on a graph $G$ if and only if it factors as a product of potential functions, each depending only on a clique of $G$ :

$$
p(x)=\frac{1}{Z} \prod_{C \in \mathcal{C}(G)} \phi_{C}\left(x_{C}\right)
$$

- Quantum [4]: Let $G=(V, E)$ be a tree and let $\rho>0$ be a quantum state satisfying $I\left(v_{i}: v_{k} \mid v_{j}\right)=0$ for all $\left(v_{i}, v_{j}, v_{k}\right) \in V^{3}$ such that $v_{j}$ separates $v_{i}$ from $v_{k}$ in $G$. Then $\rho$ is the exponential of a sum of local commuting Hamiltonians:
$\rho=\exp (H) \quad$ with $\quad H=\sum_{C \in \mathcal{C}(G)} h_{C}, \quad\left[h_{C}, h_{C^{\prime}}\right]=0 \forall C, C^{\prime} \in \mathcal{C}(G)$.


## Gibbs Varieties from Hamiltonians

- Definition. Let $X \subseteq \mathbb{S}^{n}$ be a unirational variety of $n \times n$ symmetric matrices. Its Gibbs manifold is $\mathrm{GM}(X):=\exp (X)$, the Gibbs variety $\operatorname{GV}(X)$ is the Zariski closure $\operatorname{GV}(X):=\overline{\operatorname{GM}(X)} \subseteq \mathbb{S}^{n}$.
- In general, sums of local commuting Hamiltonians do not form a unirational variety. However, one can consider suitable subsets, e.g. sums of local decomposable tensors $X_{G}:=\sum_{C \in \mathcal{C}(G)} X_{C}$.


## Quantum Information Projection

- Let $\mathcal{Q}$ be a family of quantum states. Given an arbitrary state $\rho$, what is the state $\tilde{\rho} \in \mathcal{Q}$ "closest" to $\rho$ ? (Analogue of MLE)
Definition. The quantum relative entropy is

$$
D(\rho \| \sigma):= \begin{cases}\operatorname{tr}(\rho(\log (\rho)-\log (\sigma))) & \text { if } \operatorname{supp}(\rho) \subseteq \operatorname{supp}(\sigma) \\ +\infty & \text { otherwise }\end{cases}
$$

Definition. The quantum information projection of $\rho$ to $\mathcal{Q}$ is

$$
\tilde{\rho}:=\underset{\rho^{\prime} \in \mathcal{Q}}{\operatorname{argmin}} D\left(\rho \| \rho^{\prime}\right) .
$$

Theorem. Let $\mathfrak{H}=\left\langle H_{1}, \ldots, H_{k}\right\rangle \subseteq \mathbb{S}_{\mathbb{R}}^{d}$ be a span of commuting Hamiltonians, fix $\rho \in \mathbb{S}_{\mathbb{R}}^{d}, \rho>0$, and let $b_{i}:=\operatorname{tr}\left(H_{i} \rho\right)$ for $i=1, \ldots, k$. Let $M_{\rho}:=\left\{A \in \mathbb{S}_{\mathbb{R}}^{d} \mid\left\langle H_{i}, A\right\rangle=b_{i}\right.$ for $\left.i=1, \ldots, k\right\}$.
Then $M_{\rho} \cap \mathrm{GM}(\mathfrak{H})$ consists of a unique point $\rho^{*}$. It is the maximiser of the von Neumann entropy inside $M_{\rho}$ and the quantum information projection of $\rho$ to GM $(\mathfrak{H})$. (Analogue of Birch's Theorem)

## Quantum Information Theory Basics

- A quantum state on $N$ qudits is represented by a unit length vector $|\psi\rangle \in \mathcal{H}_{1} \otimes \cdots \otimes \mathcal{H}_{N}, \quad \mathcal{H}_{i} \cong \mathbb{C}^{d}$.
- An ensemble of quantum states is a collection $\left\{p_{i},\left|\psi_{i}\right\rangle\right\}_{i}$, where $\left\{p_{i}\right\}_{i}$ is a discrete probability distribution. It is described by its density matrix

$$
\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \in \operatorname{End}\left(\mathcal{H}_{1} \otimes \cdots \otimes \mathcal{H}_{N}\right)
$$

We think of quantum states as real positive-semidefinite matrices with trace one

- The partial trace is an operation to obtain the state of a subsystem from the state of a multipartite system, analogous to marginalisation in statistics. For a bipartite state $\rho_{A B}$ on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$, it is defined on elementary tensors via

$$
\operatorname{tr}_{B}\left(\left|a_{i}\right\rangle\left\langle a_{j}\right| \otimes\left|b_{k}\right\rangle\left\langle b_{l}\right|\right):=\left|a_{i}\right\rangle\left\langle a_{j}\right| \cdot \operatorname{tr}\left(\left|b_{k}\right\rangle\left\langle b_{l}\right|\right)=\left|a_{i}\right\rangle\left\langle a_{j}\right| \cdot\left\langle b_{l} \mid b_{k}\right\rangle
$$

and is extended linearly. We write $\rho_{A}:=\operatorname{tr}_{B} \rho_{A B}$; this is a quantum state on $\mathcal{H}_{A}$.

## Quantum Conditional Mutual Information Variety

- Definition. The von Neumann entropy $S(\rho)$ of a quantum state $\rho$ is $S(\rho):=-\operatorname{tr}(\rho \log \rho)$.
- Definition. For a tripartite state $\rho_{A B C}$, the quantum conditional mutual information (QCMI) between $A$ and $C$ given $B$ is

$$
I(A: C \mid B):=S\left(\rho_{A B}\right)+S\left(\rho_{B C}\right)-S\left(\rho_{A B C}\right)-S\left(\rho_{B}\right)
$$

The vanishing $I(A: C \mid B)=0$ is analogous to classical conditional independence $A \Perp C \mid B$

- Theorem [2]. A state $\rho_{A B C}$ satisfies $I(A: C \mid B)=0$ if and only if it admits a factorisation

$$
\rho_{A B C}=\Lambda_{A B} \Lambda_{B C} \quad \text { with } \quad\left[\Lambda_{A B}, \Lambda_{B C}\right]=0,
$$

where $\Lambda_{A B}, \Lambda_{B C}$ are symmetric matrices acting nontrivially only on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ resp. $\mathcal{H}_{B} \otimes \mathcal{H}_{C}$.
Construction. Let $G=\left(V=\left\{S_{1}, \ldots, S_{N}\right\}, E\right)$ be a tree.

- For each triple of vertices $\left(S_{i}, S_{j}, S_{k}\right)$ such that $S_{j}$ separates $S_{i}$ and $S_{k}$ in $G$, impose the QCMI statement $\operatorname{tr}_{V \backslash\left\{S_{i}, S_{j}, S_{k}\right\}} \rho_{V}=\Lambda_{S_{i} S_{j}} \Lambda_{S_{j} S_{k}}$ with $\left[\Lambda_{S_{i} S_{j}}, \Lambda_{S_{j} S_{k}}\right]=0$.
- For any two QCMI statements $I\left(S_{i}: S_{k} \mid S_{j}\right)=I\left(S_{i^{\prime}}: S_{k^{\prime}} \mid S_{j^{\prime}}\right)=0$, impose compatibility constraints $\operatorname{tr}_{\mathcal{T} \backslash\left(\mathcal{T} \cap \mathcal{T}^{\prime}\right)} \rho_{\mathcal{T}}=\operatorname{tr}_{\mathcal{T}^{\wedge}\left(\mathcal{T} \cap \mathcal{T}^{\prime}\right)} \rho_{\mathcal{T}^{\prime}} \quad$ where $\quad \mathcal{T}=\left(S_{i}, S_{j}, S_{k}\right), \mathcal{T}^{\prime}=\left(S_{i^{\prime}}, S_{j^{\prime}}, S_{k^{\prime}}\right)$.
- Via elimination of the $\Lambda$ parameters, this gives rise to a variety, the QCMI variety.


## Petz Variety

- The Petz recovery map for the 3-chain graph is

$$
\mathcal{R}\left(\rho_{A B}, \rho_{B C}\right)=\left(\rho_{A B}^{1 / 2} \otimes \operatorname{Id}_{C}\right)\left(\operatorname{Id}_{A} \otimes \rho_{B}^{-1 / 2} \otimes \operatorname{Id}_{C}\right)\left(\operatorname{Id}_{A} \otimes \rho_{B C}\right)\left(\operatorname{Id}_{A} \otimes \rho_{B}^{-1 / 2} \otimes \operatorname{Id}_{C}\right)\left(\rho_{A B}^{1 / 2} \otimes \mathrm{Id}_{C}\right) ;
$$

it recovers a state $\rho_{A B C}$ satisfying $I(A: C \mid B)=0$ from two compatible two-body marginals.

- Let $V=\left\{(X, Y, Z) \in \mathbb{S}_{\mathbb{R}}^{4} \times \mathbb{S}_{\mathbb{R}}^{4} \times \mathbb{S}_{\mathbb{R}}^{2} \mid \operatorname{tr}_{A}\left(X^{2}\right)=\operatorname{tr}_{C}\left(Y^{2}\right)=Z^{2}\right\}$; then define the rational Petz map
$R: V \rightarrow \mathbb{S}_{\mathbb{R}}^{8}, \quad(x, y, z) \mapsto\left(x \otimes \operatorname{Id}_{C}\right)\left(\operatorname{Id}_{A} \otimes z^{-1} \otimes \operatorname{Id}_{C}\right)\left(\operatorname{Id}_{A} \otimes y\right)\left(\operatorname{Id}_{A} \otimes z^{-1} \otimes \operatorname{Id}_{C}\right)\left(x \otimes \operatorname{Id}_{C}\right)$.
- This map can be generalised to arbitrary trees $G$ by iteratively applying the procedure for 3-chains of $G$.
- Definition. The Petz variety is the Zariski closure of $R$. It is an irreducible variety.


## Example: 3-chain Graph

Let $G$ be the 3-chain graph and consider the qubit case, i.e. $\mathcal{H}_{i} \cong \mathbb{C}^{2}$ for $i=1,2,3$.

- The QCMI variety of $G$ is an irreducible, 12 -dimensional variety inside $\mathbb{S}^{8}$ of degree 110 , cut out by 735 equations in degrees one to five.
- For $X_{G}=\left\{K \otimes L \otimes \operatorname{Id}_{2}+\operatorname{Id}_{2} \otimes M \otimes N \mid K, L, M, N \in \mathbb{S}^{2}\right\}$, the Gibbs variety $\operatorname{GV}\left(X_{G}\right) \subseteq \mathbb{S}^{8}$ is an irreducible, 14-dimensional variety cut out by nine linear forms and 66 quadratic equations with coefficients $\pm 1$.


## References

1. Eliana Duarte, Dmitrii Pavlov and Maximilian Wiesmann. Algebraic Geometry of Quantum Graphical Models. arXiv:2308.11538. submitted to Advances in Applied Mathematics.
2. Patrick Hayden et al. Structure of states which satisfy strong subadditivity of quantum entropy with equality, Communications in Mathematical Physics, Vol. 246, pp. 359-374, 2004.
3. Seth Sullivant. Algebraic statistics. Vol. 194, American Mathematical Soc., 2018.
4. David Poulin and Matthew B Hastings. Markov entropy decomposition: a variational dual for quantum belief propagation. Physical Review Letters, 106(8):080403, 2011.
