Toric Fiber Products in Geometric Modeling

Eliana Duarte, Benjamin Hollering, <u>Maximilian Wiesmann</u>

Max-Planck-Institute for Mathematics in the Sciences, Leipzig, Germany wiesmann@mis.mpg.de

MAX PLANCK INSTITUTE IN THE SCIENCES

Geometric Modeling

In Geometric Modeling, one is concerned with describing shapes in Euclidean space. Particularly, one is interested in finding nice parametrizations of such shapes. Such parametrizations are defined by a set of blending functions β_i , a set of control points $\mathbf{p}_i \in \mathbb{R}^d$ and weights $w_i \in \mathbb{R}_{>0}$ giving rise to a Bézier

points, taken from [2]

patch

 $\Phi(\mathbf{t}) = \sum_{i} w_i \beta_i(\mathbf{t}) \mathbf{p}_i.$

Rational Linear Precision (RLP)

• Let \mathcal{B} be an integer point configuration in \mathbb{Z}^d and $P = \operatorname{Conv}(\mathcal{B})$ the associated polytope • Let $X_{\mathcal{B},w}$ be the scaled projective toric variety defined by P and weights w

Definition. The pair (P, w) has RLP if there is a set of rational functions $\{\hat{\beta}_{\mathbf{b}}\}_{\mathbf{b}\in\mathcal{B}}$ on \mathbb{C}^d satisfying: 1. $\sum_{\mathbf{b}\in\mathcal{B}}\beta_{\mathbf{b}}=1.$ 2. The functions $\{\beta_{\mathbf{b}}\}_{\mathbf{b}\in\mathcal{B}}$ define a rational parametrization $\hat{\beta} : \mathbb{C}^d \to X_{\mathcal{B},w} \subset \mathbb{P}^{|\mathcal{B}|-1}, \quad \hat{\beta}(\mathbf{t}) = (\hat{\beta}_{\mathbf{b}}(\mathbf{t}))_{\mathbf{b} \in \mathcal{B}}.$

In our case, the p_i are the lattice points of a polytope $P \subseteq \mathbb{R}^d$ and the β_i are functions on P. It is desirable that Fig. 1: A Bézier patch with control the weighted polytope (P, w) satisfies the property of rational linear precision.

3. For every $\mathbf{p} \in \operatorname{Relint}(P) \subset \mathbb{C}^d$, $\beta_{\mathbf{b}}(\mathbf{p})$ is defined and is a nonnegative real number. 4. Linear precision: $\sum_{\mathbf{b}\in\mathcal{B}}\beta_{\mathbf{b}}(\mathbf{p})\mathbf{b} = \mathbf{p}$ for all $\mathbf{p}\in P$.

Connection to Algebraic Statistics: (P, w) has RLP iff the scaled toric variety $X_{\mathcal{B},w}$ has MLdegree one

Toric Fiber Products

• Fix two integral point configurations $\mathcal{B} = \{\mathbf{b}_{i}^{i} : i \in [r], j \in [s_{i}]\} \subseteq \mathbb{Z}^{d_{1}}$ and $\mathcal{C} = \{\mathbf{c}_k^i : i \in [r], k \in [t_i]\} \subseteq \mathbb{Z}^{d_2}$

• Equip them with a multigrading $\mathcal{A} = \{\mathbf{a}^i : i \in [r]\} \subseteq \mathbb{Z}^d$ such that $deg(\mathbf{b}_{i}^{i}) = deg(\mathbf{c}_{k}^{i}) = \mathbf{a}^{i}$ is linear

Definition. The toric fiber product of \mathcal{B} and \mathcal{C} is the point configuration $\mathcal{B} \times_{\mathcal{A}} \mathcal{C}$ given by

 $\mathcal{B} \times_{\mathcal{A}} \mathcal{C} = \{ (\mathbf{b}_{i}^{i}, \mathbf{c}_{k}^{i}) : \mathbf{b}_{i}^{i} \in \mathcal{B}, \mathbf{c}_{k}^{i} \in \mathcal{C}, \operatorname{deg}(\mathbf{b}_{i}^{i}) = \operatorname{deg}(\mathbf{c}_{k}^{i}) \}.$

Fig. 2: Illustration of the toric fiber product $\mathcal{B} \times_{\mathcal{A}} \mathcal{C}$ with $\mathcal{A} = \{e_1, e_2\}$; the multigrading corresponds to the coloring of the lattice points

Motivation

- It was known that the MLdegree is multiplicative with respect to toric fiber products [4]
- Therefore, toric fiber products preserve RLP

Question. What do the blending functions of a toric fiber product that satisfy RLP look like?

Proof Idea

• To show that the two expressions in (\bigstar) agree we use a torus action induced by the multigrading:

> $T_{\mathcal{A}} \times X_{\mathcal{B} \times {}_{\mathcal{A}} \mathcal{C}} \to X_{\mathcal{B} \times {}_{\mathcal{A}} \mathcal{C}}$ $(t^1,\ldots,t^{|\mathcal{A}|}).(x^i_{j,k})^{i\in|\mathcal{A}|}_{(j,k)\in|\mathcal{B}^i\times\mathcal{C}^i|} = (t^i x^i_{j,k})^{i\in|\mathcal{A}|}_{(j,k)\in|\mathcal{B}^i\times\mathcal{C}^i|}$

- The two expressions always lie in the same $T_{\mathcal{A}}$ -orbit
- On every orbit, we can find a point on which they agree; on the orbit of maximal dimension, this is the point where they evaluate to an MLE
- The rest of the proof amounts to checking the four properties of RLP

• We assume \mathcal{A} to be linearly independent

• For weight vectors w, \tilde{w} of \mathcal{B}, \mathcal{C} , define toric fiber product weights $w_{\mathcal{B} \times_{\mathcal{A}} \mathcal{C}} = (w_j^i \tilde{w}_k^i)_{(j,k) \in |\mathcal{B}^i \times \mathcal{C}^i|}^{i \in |\mathcal{A}|}$

Theorem. If P and Q are polytopes with rational linear precision for weights w, \tilde{w} , respectively, then the toric fiber product $P \times_{\mathcal{A}} Q$ has rational linear precision with vector of weights $w_{\mathcal{B} \times_{\mathcal{A}} \mathcal{C}}$. Moreover, blending functions with rational linear precision for $P \times_{\mathcal{A}} Q$ are given by

Main Result

$$\beta_{j,k}^{i}(\mathbf{p},\mathbf{q}) = \frac{\beta_{j}^{i}(\mathbf{p})\beta_{k}^{i}(\mathbf{q})}{\sum_{j'\in|\mathcal{B}^{i}|}\beta_{j'}^{i}(\mathbf{p})} = \frac{\beta_{j}^{i}(\mathbf{p})\beta_{k}^{i}(\mathbf{q})}{\sum_{k'\in|\mathcal{C}^{i}|}\beta_{k'}^{i}(\mathbf{q})}$$

where $(\mathbf{p}, \mathbf{q}) \in P \times_{\mathcal{A}} Q$.

• It turns out that the two expressions above are equal on $P \times_{\mathcal{A}} Q$; this is the hardest part of the proof

Example

• The square (Fig. 2 left) has RLP with weights (1, 1, 1, 1) and blending functions $\beta_{\binom{0}{0}} = (1-x_1)(1-x_2), \qquad \qquad \beta_{\binom{1}{0}} = x_2(1-x_1), \qquad \qquad \beta_{\binom{0}{1}} = x_1(1-x_2), \qquad \qquad \beta_{\binom{1}{1}} = x_1x_2$ • The trapezoid (Fig. 2 center) has RLP with weights (1, 2, 1, 1, 1) and blending functions $\tilde{\beta}_{\binom{0}{0}} = \frac{(1-y_2)(2-y_1-y_2)^2}{(2-y_2)^2}, \quad \tilde{\beta}_{\binom{1}{0}} = \frac{2y_1(1-y_2)(2-y_1-y_2)}{(2-y_2)^2}, \quad \tilde{\beta}_{\binom{2}{0}} = \frac{y_1^2(1-y_2)}{(2-y_2)^2}, \quad \tilde{\beta}_{\binom{0}{1}} = \frac{y_2(2-y_1-y_2)}{2-y_2}, \quad \tilde{\beta}_{\binom{1}{1}} = \frac{y_1y_2}{2-y_2}$ • Their toric fiber product (Fig. 2 right) has RLP with weights (1, 2, 1, 1, 2, 1, 1, 1, 1, 1). One blending function IS $\beta_{2,3}^{1} = \frac{\beta_{2}^{1}\hat{\beta}_{3}^{1}}{\beta_{1}^{1} + \beta_{1}^{2}} = \frac{x_{1}(1-x_{2})y_{1}^{2}(1-y_{2})}{1-x_{2}} = \frac{\beta_{2}^{1}\hat{\beta}_{3}^{1}}{\hat{\beta}_{1}^{1} + \hat{\beta}_{2}^{1} + \hat{\beta}_{2}^{1}} = \frac{x_{1}(1-x_{2})y_{1}^{2}(1-y_{2})}{1-y_{2}}$

Summary

- In this work, we introduced toric fiber products, well-known in Algebraic Statistics, to the context of Geometric Modeling
- This allows for the construction of new polytopes having the property of rational linear precision from lower dimensional ones, in analogy to constructing statistical models with rational MLE
- Particularly, we can give an explicit description of blending functions satisfying RLP for the toric fiber product polytope
- In our paper, we also give an explicit description of the Horn matrix of a toric fiber product

• While the denominators are not the same, the two expressions above are equal on $\operatorname{Relint}(P \times_{\mathcal{A}} Q)$

References

- . Eliana Duarte, Benjamin Hollering and Maximilian Wiesmann. Toric Fiber Products in Geometric Modeling. arXiv:2303.08754. submitted to GSI'23: 6th International Conference on Geometric Science of Information.
- 2. David A. Cox. Applications of polynomial systems. American Mathematical Society, Vol. 134, 2020.
- 3. Seth Sullivant. *Toric Fiber Products*. Journal of Algebra, 316(2):560–577, 2007.
- 4. Carlos Améndola, Dimitra Kosta and Kaie Kubjas. Maximum Likelihood Estimation of Toric Fano Varieties. Algebraic Statistics, 11(1):5–30, 2020.