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Geometric Modeling

In Geometric Modeling, one is concerned with describing shapes
in Euclidean space. Particularly, one is interested in finding nice
parametrizations of such shapes. Such parametrizations are defined
by a set of blending functions βi, a set of control points pi ∈ Rd and

Fig. 1: A Bézier patch with control

points, taken from [2]

weights wi ∈ R>0 giving rise to a Bézier
patch

Φ(t) = ∑
i

wiβi(t)pi.

In our case, the pi are the lattice points
of a polytope P ⊆ Rd and the βi are
functions on P . It is desirable that
the weighted polytope (P,w) satisfies the
property of rational linear precision.

Rational Linear Precision (RLP)

• Let B be an integer point configuration in Zd and P = Conv(B) the associated polytope

• Let XB,w be the scaled projective toric variety defined by P and weights w

Definition. The pair (P,w) has RLP if there is a set of rational functions {β̂b}b∈B on Cd satisfying:

1.∑b∈B β̂b = 1.

2. The functions {β̂b}b∈B define a rational parametrization

β̂ ∶ Cd ⇢XB,w ⊂ P∣B∣−1, β̂(t) = (β̂b(t))b∈B.

3. For every p ∈ Relint(P ) ⊂ Cd, β̂b(p) is defined and is a nonnegative real number.

4. Linear precision: ∑b∈B β̂b(p)b = p for all p ∈ P .

Connection to Algebraic Statistics: (P,w) has RLP iff the scaled toric variety XB,w has MLdegree one

Toric Fiber Products

• Fix two integral point configurations B = {bi
j ∶ i ∈ [r] , j ∈ [si]} ⊆ Zd1 and

C = {cik ∶ i ∈ [r] , k ∈ [ti]} ⊆ Zd2

•Equip them with a multigrading A = {ai ∶ i ∈ [r]} ⊆ Zd such that
deg(bi

j) = deg(c
i
k) = a

i is linear

Definition. The toric fiber product of B and C is the point configuration
B ×A C given by

B ×A C = {(b
i
j,c

i
k) ∶ b

i
j ∈ B, c

i
k ∈ C, deg(bi

j) = deg(c
i
k)}.
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P ×A Q = Conv(B ×A C)
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Fig. 2: Illustration of the toric fiber product B ×A C with A = {e1, e2}; the multigrading corresponds to the coloring of the lattice points

Motivation

• It was known that the MLdegree is multiplicative with respect to
toric fiber products [4]

•Therefore, toric fiber products preserve RLP

Question. What do the blending functions of a toric fiber product
that satisfy RLP look like?

Proof Idea

•To show that the two expressions in (☀) agree we use a torus action
induced by the multigrading:

TA ×XB×AC →XB×AC

(t1, . . . , t∣A∣). (xij,k)
i∈∣A∣

(j,k)∈∣Bi×Ci∣
= (tixij,k)

i∈∣A∣

(j,k)∈∣Bi×Ci∣

•The two expressions always lie in the same TA-orbit

•On every orbit, we can find a point on which they agree; on the
orbit of maximal dimension, this is the point where they evaluate to
an MLE

•The rest of the proof amounts to checking the four properties of
RLP

Summary

• In this work, we introduced toric fiber products, well-known in Al-
gebraic Statistics, to the context of Geometric Modeling

•This allows for the construction of new polytopes having the prop-
erty of rational linear precision from lower dimensional ones, in anal-
ogy to constructing statistical models with rational MLE

•Particularly, we can give an explicit description of blending functions
satisfying RLP for the toric fiber product polytope

• In our paper, we also give an explicit description of the Horn matrix
of a toric fiber product

Main Result

•We assume A to be linearly independent

• For weight vectors w, w̃ of B,C, define toric fiber product weights wB×AC = (w
i
jw̃

i
k)

i∈∣A∣

(j,k)∈∣Bi×Ci∣

Theorem. If P and Q are polytopes with rational linear precision for weights w, w̃, respectively, then the
toric fiber product P ×A Q has rational linear precision with vector of weights wB×AC. Moreover, blending
functions with rational linear precision for P ×AQ are given by

βi
j,k(p,q) =

βi
j(p)β

i
k(q)

∑j′∈∣Bi∣β
i
j′(p)

=
βi
j(p)β

i
k(q)

∑k′∈∣Ci∣β
i
k′(q)

(☀)

where (p,q) ∈ P ×AQ.

• It turns out that the two expressions above are equal on P ×AQ; this is the hardest part of the proof

Example

•The square (Fig. 2 left) has RLP with weights (1, 1, 1, 1) and blending functions

β(00) = (1−x1)(1−x2), β(10) = x2(1−x1), β(01) = x1(1−x2), β(11) = x1x2

•The trapezoid (Fig. 2 center) has RLP with weights (1, 2, 1, 1, 1) and blending functions

β̃(00) =
(1−y2)(2−y1−y2)2

(2−y2)2
, β̃(10) =

2y1(1−y2)(2−y1−y2)

(2−y2)2
, β̃(20) =

y21(1−y2)

(2−y2)2
, β̃(01) =

y2(2−y1−y2)

2−y2
, β̃(11) =

y1y2
2−y2

•Their toric fiber product (Fig. 2 right) has RLP with weights (1, 2, 1, 1, 2, 1, 1, 1, 1, 1). One blending function
is

β1
2,3 =

β1
2β̃

1
3

β1
1 + β

2
1

=
x1(1−x2)y21(1−y2)

1−x2
=

β1
2β̃

1
3

β̃1
1 + β̃

1
2 + β̃

1
3

=
x1(1−x2)y21(1−y2)

1−y2

•While the denominators are not the same, the two expressions above are equal on Relint(P ×AQ)
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4. Carlos Améndola, Dimitra Kosta and Kaie Kubjas. Maximum Likelihood Estimation of Toric Fano Varieties. Algebraic Statistics, 11(1):5–30, 2020.


