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Chapter 1

Introduction

Die Mathematik sollte stets verknüpft gehalten werden mit
allem, was den Menschen bewegt.

— Felix Klein

Nonlinear algebra [DM07, MS21] concerns the study of solution sets to systems of poly-
nomial equations, with a focus on computations and applications. This focus distinguishes
nonlinear algebra from classical algebraic geometry. Wherever polynomials appear in ar-
eas like statistics, data science, optimisation or physics, the nonlinear algebraist enters the
stage. Their toolbox comprises tools from algebraic geometry, but also other branches of
mathematics like combinatorics, commutative algebra or topology. Importantly, the non-
linear algebraist is never missing their computer: often, the desired output to a problem is
a (certified) computational result or an algorithm. Moreover, in the spirit of experimental
mathematics [BBG04], computer-aided examples provide a useful guide for novel results.
This has been made possible by relatively recent advances in computer algebra systems
[GS02, OSC24] and numerical algebraic geometry software [BT18]. The focus on applica-
tions is a bidirectional interaction: the mathematical tools address the applied problem,
while the application often inspires new and intrinsically valuable mathematical concepts.

The applications treated in this thesis are threefold. In Chapter 3 the problem of maxi-
mum likelihood estimation (MLE) is studied from an algebro-geometric perspective. MLE
is ubiquitous in statistical applications as it connects the statistical model with real-world
data, see e.g. [Fel81, HTF09, Jam06]. If the statistical model at hands is representable
by an algebraic variety, which constitutes the framework of algebraic statistics [Sul18],
MLE amounts to solving a polynomial system of equations. The second application from
the title, neurocomputing, is addressed in Chapter 4 in the context of polynomial neural
networks. The output of a network of this class is a tuple of polynomials in the input
data. Although neural networks are a core concept of machine learning and widely used
with overwhelming success [GBC16], the theoretical understanding of this success is of-
ten missing. For polynomial neural networks, we can use nonlinear algebra to study the
expressivity and the optimisation process of these networks. The final Chapter 5 contains
interactions between nonlinear algebra and quantum physics. In quantum information
theory, quantum states are represented by density matrices [NC02]. In the first part of
the chapter, we associate algebraic varieties to sets of states satisfying certain conditions
on their mutual information depending on the structure of a graph. This generalises the
use of nonlinear algebra in classical graphical models to the quantum world. The second



part of the chapter draws inspiration from perturbative quantum field theory [BIZ80] to
enumerate edge-coloured graphs.

A common thread between the chapters is the appearance of a set of critical equations
governing the problem. In Chapter 3 these are the likelihood equations whose solutions
are the critical points of the log-likelihood function. In Chapter 4 these are the critical
equations of the loss function appearing in the training process of the network. And in
Chapter 5 these are on the one hand the equations computing the quantum information
projection (the quantum analogue of MLE) and on the other hand the critical points gov-
erning the asymptotics of the number of edge-coloured graphs. Of particular interest is the
number of solutions to these equations. This is often a degree, an invariant of the algebraic
variety underlying the problem. In the context of MLE it is the ML degree [CHKS06], for
training of polynomial neural networks we introduce the notion of learning degree. The
computation of these numbers relates to such fields as intersection theory [Ful13], singu-
larity theory [GLS07] and discriminants [GKZ08]. All of these topics appear in this thesis.

In the following, we give an overview of the results presented in this thesis. The
process of maximum likelihood estimation associates to data a point in a statistical model
that best describes the data. Questions relating the geometry of MLE [HS14] are studied in
Chapter 3. A particular emphasis is laid on models representable by toric varieties. These
correspond to log-affine models in statistics. The use of toric varieties [CLS11] opens up a
wide range of geometric, algebraic and combinatorial tools to study MLE. The number of
critical points of the log-likelihood function on the underlying variety is the ML degree. It
captures the algebraic complexity of MLE for a particular model. In the special case that
the ML degree equals one, the algebraic variety representing the model admits a beautiful
rational parametrisation by associating to a data point its maximum likelihood estimate.
This parametrisation has been described by June Huh in terms of the Horn matrix of the
variety [Huh14]. In Section 3.1 we provide an explicit description of the Horn matrix
for toric fibre products [Sul07]. This construction allows one to build higher dimensional
models with ML degree one from lower dimensional ones. Moreover, we connect toric
fibre products to geometric modelling. This field aims to find simple parametrisations of
shapes for modelling in a computer via so-called blending functions. Here, models with
ML degree one play a special role since they admit blending functions satisfying rational
linear precision [GPS10]. We explicitly construct blending functions with this property for
a toric fibre product. This section is based on the article [DHW23].

Log-affine statistical models include a scaling of the underlying toric variety. This scal-
ing affects the ML degree of the model [ABB+19]. It is a difficult problem to determine
which scaling leads to which ML degree. This problem is studied in Section 3.2, based on
the article [TW24a]. A key fact employed is that the ML degree is the Euler characteris-
tic of a very affine variety [Huh13]. Motivated by this, we introduce Euler stratifications.
This is a stratification of the base locus of a parametric family of varieties such that the
Euler characteristic of the fibre is constant over each stratum. Besides several structural re-
sults, we develop algorithms to compute Euler stratifications for projective and very affine
hypersurface families. Since an Euler stratification of a very affine hypersurface family
captures the dependence of the ML degree of a toric variety on the scaling parameters
completely, this gives a computational answer to the problem described above.

A common perspective in algebraic statistics is to describe a statistical model implicitly
via the ideal cutting out the underlying variety. In other branches of statistics it is more
natural to work with a parametric description of the model. We take up this point of view
in Section 3.3 by introducing the parametric likelihood correspondence. This connects data
to critical points of the parametric likelihood equations. We study this correspondence by

18



relating it to the theory of hypersurface arrangements, and in particular to modules of
logarithmic derivations [OT13]. The main result identifies the ideal defining the likelihood
correspondence as the presentation ideal of the Rees algebra of the likelihood module, a
module related to logarithmic derivations. This gives rise to a new way of computing this
ideal which proves to be more efficient in practice than previous methods. The computa-
tion is especially simple if the hypersurface arrangement is gentle; we investigate this new
arrangement property. This section is based on the paper [KKM+24a].

We then turn to neurocomputing, more precisely polynomial neural networks [KTB19],
in Chapter 4. Two questions are of most concern to us: What is the expressivity [RPK+17]
of the network, i.e. which functions can the network represent exactly? And, what does
the optimisation process [GBC16, Part II, §8] look like? More concretely, how many func-
tions does the network learn in an empirical risk minimisation procedure after different
initialisations? The former question asks for a description of the neuromanifold, also
called functional space, and is studied in Section 4.2. For polynomial neural networks, this
space is a semialgebraic set that can be described by polynomial equations and inequali-
ties. A good approximation to this space is its Zariski closure, the neurovariety. We study
both neuromanifolds and neurovarieties for several network architectures. For shallow
networks, these spaces relate to objects known from the theory of tensors [Lan11].

The latter question is addressed in Section 4.3. We introduce the learning degree of
a network, an invariant of the neurovariety counting the number of nonsingular critical
points of the loss function on the neurovariety; here, we enter the field of metric alge-
braic geometry [BKS24]. The learning degree provides an upper bound on the number of
functions a polynomial neural network can learn via commonly applied training methods
like gradient descent after different initialisations. It is bounded by the generic Euclidean
distance degree [DHO+15], a common notion in metric algebraic geometry. We argue that
our concept of learning degree provides meaningful and novel insights into the network’s
training process. Chapter 4 is based on the article [KLW24a].

The final Chapter 5 explores interactions between nonlinear algebra and quantum
physics. In algebraic statistics, there has been a very successful approach to associate
algebraic varieties to graphical models, where a graph represents the conditional indepen-
dence structure between random variables. Section 5.1 aims to generalise this approach to
quantum information theory [NC02] by associating algebraic varieties to quantum graph-
ical models, based on the paper [DPW23a]. Such models encode sets of quantum states
satisfying certain constraints on the mutual information between the states of subsystems
[LP08]. Quantum states are represented by density matrices. If we restrict to diagonal
matrices then our varieties associated to quantum graphical models reduce to the classical
graphical models in algebraic statistics. One can therefore view quantum graphical models
as a noncommutative generalisation of classical graphical models. The quantum analogue
to MLE is the quantum information projection, minimising the quantum relative entropy
between a set of quantum states (the model) and an additional state. We prove a generali-
sation of Birch’s Theorem (a well-known result for MLE on log-affine models) for quantum
information projections to quantum exponential families of certain Hamiltonians.

Lastly, in Section 5.2, we turn to the combinatorial problem of enumerating edge-
coloured graphs, based on the paper [BMW24]. Here, we draw inspiration from per-
turbative quantum field theory, where a path integral is expanded in terms of Feynman
diagrams, see e.g. [Wei22, Ch. 4]. Building on this idea, we relate the generating func-
tion of edge-bicoloured graphs to the asymptotic expansion of an exponential integral.
This representation then allows us to find a formula for the asymptotic number of regular
edge-bicoloured graphs with large Euler characteristic. The formula involves certain criti-
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cal points of a polynomial governing the vertex incidence structure of the graphs. This is
where nonlinear algebra enters the game. Interestingly, one observes “phase transitions”
in the asymptotics when a coupling parameter between the colours is varied. We relate
this phenomenon to phase transitions in the Ising model from statistical physics [DC23].

Gian-Carlo Rota, founder of modern combinatorics and philosopher, remarked the
following: “Every field has its taboos. In algebraic geometry the taboos are (1) writing a
draft that can be followed by anyone but two or three of one’s closest friends, (2) claiming
a result has applications, (3) mentioning the word ‘combinatorial’ [...].” [Rot97, p. 231]. In
nonlinear algebra, we are allowed to break all of these taboos. We hope the reader might
enjoy this and in particular will find taboo (1) to be violated.
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Chapter 2

Background

In this chapter we introduce preliminary material providing the background for the fol-
lowing chapters. The choice of topics explained here is very subjective and reflects the
author’s (un)knowledge. The reader might wish to skip some sections, revisit the chap-
ter at a later point or consult the literature that is referenced throughout the chapter for
more details. An exposition of toric varieties is provided in Section 2.1. Toric varieties
play a crucial role throughout Chapter 3 as they represent log-affine models in algebraic
statistics. They reappear in the context of quantum exponential families in Section 5.1. Al-
gebraic statistics is introduced in Section 2.2, including undirected graphical models and
the fundamentals of likelihood geometry. Parts of this section appeared in [DHW23]. In
Section 2.3, partially following [KKM+24a, §2], we collect some results from commutative
algebra; these will mostly be used in Section 3.3. Moreover, we introduce symmetric tensor
decomposition which appears in Section 4.2 in the context of polynomial neural networks;
this is taken from [KLW24a, §3.1]. An exposition on hypersurface arrangements is found
in Section 2.4. Some of this is material taken from [KKM+24a, §2, §5]. The notions dis-
cussed therein are used in Section 3.3. In Section 2.5 we introduce basic notions of neural
networks, following the expository sections in [KLW24a, §2, §6]. Finally, in Section 2.6,
we present the fundamentals of quantum information theory necessary for Section 5.1 on
quantum graphical models. This exposition is taken from [DPW23a, §2, App. A].



2.1. Toric varieties
Toric varieties are a class of algebraic varieties that exhibit, besides their algebraic and
geometric structure, a rich combinatorial structure. In pure mathematics, this makes them
a common testing ground for conjectures, for example in the context of mirror symmetry,
see e.g. [CK99]. Despite being a very specific class of varieties, one might argue that
most varieties a human comes up with are in fact toric. Moreover, nature seems to favour
toric varieties as well, as has been argued with the slogan “the world is toric” in the book
[MS21]. Therein, the authors argue that toric varieties naturally occur in many applications
of nonlinear algebra to the sciences. In this thesis, we encounter toric varieties in the
contexts of algebraic statistics (see Section 2.2) and geometric modelling (see Section 3.1),
and as certain quantum exponential families in Subsections 5.1.6 and 5.1.7.

Let A ∈ Zd×n be an integer matrix, let ai ∈ Zd be the ith column of A and let t ∈ (C∗)d

be a point in the algebraic torus. We write tai shorthand for ∏d
j=1 t

aji
j . Moreover, let z ∈

(C∗)n be a vector of nonzero complex scalings. This data gives rise to a monomial map

ϕ′A,z : (C∗)d → (C∗)n, t 7→ (z1ta1 , . . . , zntan).

The projective space Pn−1 contains an (n− 1)-dimensional dense torus

T = Pn−1 \ V(x1 . . . xn) = {(1 : t1 : · · · : tn−1) : t1, . . . , tn−1 ∈ C∗} ∼= (C∗)n−1.

The scaling invariance of homogeneous coordinates gives rise to a short exact sequence

1→ C∗ → (C∗)n π−→ T → 1.

We define the map ϕA,z to be the composition of the monomial map ϕ′A,z with π, followed
by the inclusion of T into Pn−1, i.e.

ϕA,z : (C∗)d ϕ′A,z−−→ (C∗)n π−→ T ↪→ Pn−1.

Definition 2.1.1 ([CLS11, Def. 2.1.1]). The scaled projective toric variety XA,z is the Zariski
closure of the image of ϕA,z, in symbols XA,z = im(ϕA,z) ⊆ Pn−1.

If z = (1, 1, . . . , 1), we write XA = XA,(1,1,...,1) for short. Moreover, we might just
drop the adjectives “scaled projective” from now on and simply call XA,z a toric variety.
Sometimes it will be convenient to assume that the first row of A is the all-ones vector.
Then we can directly define XA,z to be the image closure of (C∗)d → Pn−1, t 7→ (z1ta1 :
· · · : zntan). Whenever this is the case, we will simply denote this map by ϕA,z. One should
however be careful that XA,z is then (d− 1)-dimensional, and not d-dimensional as before.
It will be apparent from the context which convention we are using.

Example 2.1.2. The scaling z = (1, 1, 1, 1) together with the integer matrix

A =

(
0 1 0 1
0 0 1 1

)
give rise to the map ϕA,z : (C∗)2 → P3, (t1, t2) 7→ (1 : t1 : t2 : t1t2). The Zariski closure
of this map is the variety XA = XA,z = V(x1x4 − x2x3) ⊂ P3, which can be seen to be the
closed image of the Segre embedding P1 ×P1 ↪→ P3. ♢
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In general, the map ϕA,z might be many-to-one or even have positive dimensional
fibres. However, it is always possible to find a different matrix A′ such that XA,z = XA′,z
and ϕA′,z is one-to-one, which is the content of the following statement.

Proposition 2.1.3. There exists an A′ ∈ Zd′×n such that XA,z = XA′,z and ϕA′,z is one-to-one.

This result is fairly standard; however, we did not find a proof in the literature, so we
provide a short argument here, making use of the Smith normal form.

Proof. Let S = PAQ be the Smith normal form of A. Then S is of the form

S =



s1 0 . . . 0
. . .

...
. . .

...
sd′ 0 . . . 0

0 0 . . . 0
. . .

...
. . .

...
0 0 . . . 0


∈ Zd×n,

where si ̸= 0 for i = 1, . . . , d′. For any x ∈ im(ϕA,z), the fibre ϕ−1
A,z(x) is isomorphic to

ϕ−1
A,z(x) ∼=

{
t ∈ (C∗)d : ϕA,z(t) = (1 : 1 : · · · : 1)

}
∼= µs1 × · · · × µsd′ × (C∗)d−d′

Here, µsi denotes the group scheme of sth
i roots of unity. Hence, setting A′ to be the matrix

consisting of the first d′ rows of Q−1, we find that A′ has the desired properties.

From now on, we assume the map ϕA,z to be one-to-one. If XA,z has dimension d, then
a d-dimensional algebraic torus (C∗)d is densely embedded into XA,z via the map ϕA,z.
The torus comes with an algebraic group action by itself which can be extended to XA,z.

Proposition 2.1.4 ([Tel22, Prop. 3.4]). The natural torus action of the dense torus (C∗)d ↪→ XA,z
given by multiplication on itself extends to XA,z.

Quite often, the statement above is taken as a definition for toric varieties, see e.g.
[CLS11, Def. 3.1.1]. This gives rise to a notion of abstract toric varieties. The toric varieties
from Definition 2.1.1 are embedded projectively. The two notions relate as follows. Let
X be an abstract projective normal toric variety. The data of an embedding of X into
projective space is equivalent to a very ample divisor D on X. This divisor can be assumed
to be torus-invariant. Associated to it is a polytope PD. Collect the lattice points of PD in
the columns of an integer matrix A. Then X ∼= XA. See [CLS11, Ch. 6] for more details.
Abstract toric varieties will appear in Subsection 3.1.2 in the context of toric fibre products.

Example 2.1.5. Consider the matrix A from Example 2.1.2. Regarding the columns of A as
lattice points in Z2, they form the lattice points of the square shown in Figure 2.1 (left). The
normal fan of this polytope is the fan depicted in Figure 2.1 (right), which is the normal
fan of P1 ×P1. One can equip each ray with the normalised volume of the corresponding
facet of the polytope; in this case, this is one for all rays. This gives a very ample (Weil)
divisor on P1 ×P1; its line bundle defines the Segre embedding of P1 ×P1 ↪→ P3. ♢

The orbits of the torus action admit a nice combinatorial description. This is commonly
known as the orbit-cone-correspondence. Here, this is given by an orbit-face-correspondence.
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Figure 2.1: The polytope associated to the Segre embedding XA from Example 2.1.2 (left)
and its normal fan, the normal fan of P1 ×P1 (right).

Theorem 2.1.6 (Orbit-face-correspondence, [MS21, Cor. 8.21]). The torus orbits of XA,z are in
inclusion-preserving bijection with the faces of the polytope P = conv(A). A d-dimensional face
F ⊆ P corresponds to the d-dimensional torus orbit {x ∈ XA,z : xi ̸= 0⇔ ai ∈ F}.

Example 2.1.7. For XA as in Examples 2.1.2 and 2.1.5, the four lattice points correspond
to the four points (1 : 0 : 0 : 0), . . . , (0 : 0 : 0 : 1). The facets correspond to the one-
dimensional orbits {(s : t : 0 : 0) ∈ P1 × P1}, . . . , {(0 : 0 : s : t) ∈ P1 × P1}. The whole
square corresponds to the two-dimensional dense torus ϕA : (C∗)2 ↪→ P1 ×P1. ♢

Also, the degree of XA,z is a combinatorial property of P = conv(A).

Theorem 2.1.8 (Kouchnirenko’s Theorem, [Tel22, Thm. 3.16]). Let P = conv(A) ⊂ Rn, then
the degree of XA,z equals the normalised volume deg(XA,z) = n! Vol(P).

Example 2.1.9. The normalised volume of the unit square is two which is the degree of the
Segre embedding P1 ×P1 ⊂ P3. ♢

2.2. Algebraic statistics

In algebraic statistics one uses tools from algebra, combinatorics and geometry to study
problems in statistics. In this section we provide basic notions of (algebraic) statistics, with
a particular emphasis on maximum likelihood estimation, which is the main problem of
interest in Chapter 3. This exposition mostly follows the book [Sul18] and [DHW23].

A discrete statistical model with n outcomes is a subsetM of the open probability simplex

∆◦n−1 =

{
(p1, . . . , pn) :

n

∑
i=1

pi = 1, pi > 0 ∀i = 1, . . . , n

}
.

Each point in ∆◦n−1 specifies a probability distribution for a random variable X with out-
come space [n] := {1, . . . , n} by setting pi = P(X = i). A broad class of statistical models
are log-affine models, also called discrete regular exponential families.

Definition 2.2.1 ([Sul18, Def. 6.2.1]). Let A ∈ Zd×n be an integer matrix with the all-ones
vector in its rowspan, and let z ∈ Rn

>0. The log-affine modelMA,z is given by

MA,z = {p ∈ ∆◦n−1 : log(p) ∈ log(z) + rowspan(A)} .

If z = (1, 1, . . . , 1), the model is called log-linear and simply denotedMA.

A key observation of algebraic statistics is that many statistical models are semialge-
braic sets, meaning they can be described by polynomial equations and inequalities. In
particular, log-affine models can be represented by toric varieties.
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Proposition 2.2.2 ([Sul18, §6.2]). A log-affine modelMA,z can be represented as the intersection
of a scaled toric variety with the open probability simplex. More precisely, let φ : Pn−1 → Cn be
the map defined by [p1 : · · · : pn] 7→ 1

p1+···+pn
(p1, . . . , pn). Then

MA,z = φ(XA,z) ∩ ∆◦n−1. (2.2.1)

Example 2.2.3. The Segre embedding XA from Example 2.1.2 represents the independence
model on two binary random variables. Indeed, let X1 and X2 be two such random vari-
ables and let pij denote the joint probability pij = P(X1 = i, X2 = j) for i, j ∈ {0, 1}.
Independence of X1 and X2 is equivalent to p00 p11 = p01 p10. This is precisely the im-
plicit definition of XA. Hence, the statistical model MA consisting of all joint probability
distributions of two binary independent random variables is represented by XA. ♢

A key example of log-affine models in statistics are undirected graphical models [Lau96],
with applications to, among others, phylogenetics, causal inference and medical diagnosis
[KF09, MDLW18]. Such models arise from graphs imposing certain conditional independence
statements on random variables represented by nodes in the graphs.

Let G = (V, E) be a simple undirected graph with labelled vertices V = {1, . . . , n}
and cliques C(G). Consider n discrete random variables associated to the vertices of G,
where the random variable Xi has state space SXi . We define a matrix A(G) as follows. The
columns of A are indexed by elements of the product state space ∏n

i=1 SXi , the rows of A are
indexed by pairs (C, s), where C ∈ C(G) is a clique of the graph G and s ∈ ∏i∈C SXi . Now
the entry (A(G))(C,s), s′ is set to be 1 if the projection of s′ to C equals s and 0 otherwise.

Definition 2.2.4 ([GMS06, §2]). The toric variety associated to the discrete undirected
graphical model of G and {X1, . . . , Xn} is the variety XA(G).

Example 2.2.5. Let G be the graph consisting of two nodes and no edges, and let {X1, X2}
be two binary random variables. Then this undirected graphical model is the indepen-
dence model and its associated toric variety is XA from Examples 2.1.2 and 2.2.3. ♢

We stated above that graphical models encode conditional independence (CI) state-
ments and explain this now. Two random variables X and Y are conditionally independent
given a third random variable Z if the conditional probability distributions factor as

P(X = x, Y = y | Z = z) = P(X = x | Z = z)P(Y = y | Z = z)

for all x ∈ SX, y ∈ SY and z ∈ SZ. This property is denoted X ⊥⊥ Y | Z. Conditional in-
dependence gives binomial constraints in the indeterminates representing the joint prob-
abilities, see [Sul18, Prop. 4.1.6]. Hence, to each collection of CI statements S one can
associate an ideal IS generated by all the binomial constraints given by the CI statements.
We describe two particularly important collections of CI statements.

Definition 2.2.6 ([Sul18]). Let G = (V, E) be a graph and {X1, . . . , Xn} be a collection of
discrete random variables as above.

1. The set of global Markov statements glob(G) consists of all CI statements

XA ⊥⊥ XC | XB,

for all disjoint triples of vertices A, B, C ⊂ V such that B separates A from C, i.e. any
path from a vertex in A to a vertex in C must pass through C. Here, XA is the joint
random variable of all Xi with i ∈ A and similarly for XB and XC.
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2. The set of pairwise Markov statements pw(G) consists of all CI statements

Xi ⊥⊥ Xj | XV\{i,j},

for any pair of vertices i, j ∈ V such that (i, j) /∈ E.

These Markov statements give rise to ideals Iglob(G) and Ipw(G). On the level of varieties,
we obtain the inclusions [GMS06, Eq. 4.6]

XA(G) ⊆ V(Iglob(G)) ⊆ V(Ipw(G)). (2.2.2)

In general, these inclusions can be strict. However, the Hammersley–Clifford Theorem
asserts that, restricted to positive parts, all the varieties above agree.

Theorem 2.2.7 (Hammersley–Clifford, [GMS06, Thm. 4.1]). For any graph G, the positive
parts in (2.2.2) agree, i.e. we have

X>0
A(G) = V

>0(Iglob(G)) = V>0(Ipw(G)).

See the beginning of Section 5.1 for another example of an undirected graphical model.

For an i.i.d. sample D = {X1, . . . , XN} of a random variable X, let ui be the number of
appearances of outcome i in D and set u = (u1, . . . , un). Often we refer to u as data. Given
data u and a statistical model M, a common task in statistics is to find the probability
distribution p̂ ∈ M that best explains the data u. To this end, one employs maximum
likelihood estimation. The maximum likelihood estimator of the model M is the function
Φ : Nn →M that assigns to u the point inM maximising the log-likelihood function

ℓu(p) =

(
n

∑
i=1

ui log(pi)

)
− u+ log(p+). (2.2.3)

Here, we make use of the notation u+ = u1 + · · ·+ un and p+ = p1 + · · ·+ pn. For discrete
regular exponential families, the log-likelihood function is concave, and under certain
genericity conditions on u ∈ Nm, existence and uniqueness of the maximum likelihood
estimate (MLE) p̂ = Φ(u) are guaranteed [Hab74]. The maximum likelihood estimator is
an algebraic function. However, this does not necessarily imply that the MLE p̂ is given in
closed form. In practice, one uses e.g. the iterative proportional scaling algorithm [DR72].

In the process of maximising the log-likelihood function one is interested in the number
of critical points of (2.2.3). This number is called the maximum likelihood degree and can be
thought of as an algebraic complexity measure of maximum likelihood estimation.

Definition 2.2.8 ([HS14, Def. 1.5]). Let X ⊆ Pn−1 be a projective variety (representing a
statistical model) and let H be the hyperplane arrangement

H =
{
(p1 : p2 : · · · : pn) ∈ Pn−1 : p1 p2 . . . pn p+ = 0

}
. (2.2.4)

The maximum likelihood degree MLdeg(X) of X is the number of critical points of the log-
likelihood function ℓu (see (2.2.3)) on Xreg \ H for generic data u.

Here, Xreg is the regular locus of X, i.e. the set of nonsingular points. The exclusion
of the distinguished hyperplane arrangement is necessary to ensure that (2.2.3) is well-
defined. Definition 2.2.8 entails that the number of critical points on Xreg \ H is constant
for generic data u. This can be shown as follows, using the likelihood correspondence.
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Definition 2.2.9 ([HS14, Def. 1.5]). The likelihood correspondence LX of a projective variety
X ⊆ Pn−1 is the Zariski closure in Pn−1 ×Pn−1 of{

(p, u) : p ∈ Xreg \ H and p is a critical point of ℓu
}

.

The likelihood correspondence comes with a projection π : LX → Pn−1
u to data space.

It can be shown that this map is generically finite-to-one [HS14, Thm. 1.6]. The cardinality
of a generic fibre of π is MLdeg(X), thus establishing well-definedness of Definition 2.2.8.

It should be emphasised that in algebraic statistics models are mostly studied implic-
itly, in contrast to a parametric representation. This has the effect that the maximum
likelihood estimate is a probability distribution and not a set of parameters giving this
point in the model. In particular, there can be many more solutions to the likelihood equa-
tions when they are solved parametrically. This parametric view is taken in Section 3.3.
For example, a parametric likelihood correspondence is introduced in Definition 3.3.4. See
also Remark 3.3.15 for a comparison between the implicit and parametric ML degrees.

Example 2.2.10 (confer [HS14, Ex. 1.14]). We compute the MLE for the independence
model XA from Examples 2.1.2 and 2.2.3 using Lagrange multipliers. Let u ∈ N4 be a
data point and let p1, . . . , p4 be coordinates of P3. The critical points of ℓu on XA satisfy

p1 p4 − p2 p3 = 0 and
(

ui

pi
− u+

p+

)
i=1,...,4

= λ (p4,−p3,−p2, p1) .

The latter condition can equivalently be expressed as

rk

 u1 u2 u3 u4
p1 p2 p3 p4

p1 p4 −p2 p3 −p2 p3 p1 p4

 = 2.

Let M be the matrix above and let I be the ideal I = ⟨p1 p4 − p2 p3⟩+ ⟨3× 3 minors of M⟩.
The variety V(I) encodes all pairs (p, u) such that p is a critical point of ℓu; however, this is
not quite the likelihood correspondence. Since XA is smooth, there are no singular points
to exclude. But we need to remove points in the distinguished arrangement H. To this end
we compute the saturation I : (p1 . . . p4 p+)∞. The resulting ideal defines the likelihood
correspondence and is minimally generated by p1 p4 − p2 p3 and the entries of

U · (p1, p2, p3, p4)
T, where U =


0 0 u2 + u4 −u1 − u3
0 u3 + u4 0 −u1 − u2

u3 + u4 0 −u1 + u4 −u1 − u3
u2 + u4 −u1 + u4 0 −u1 − u2

 .

For generic data u, the matrix U has rank three and there is a unique vector p̂ in the kernel
satisfying p̂1 p̂4 − p̂2 p̂3 = 0. This solution is given by the rational function

p̂ = u−2
+ ((u1 + u3)(u1 + u2), (u2 + u4)(u1 + u2), (u1 + u3)(u3 + u4), (u2 + u4)(u3 + u4)) .

Hence, the independence model XA has ML degree one. ♢

For log-affine models, the MLE can be computed by intersecting a linear space with
the associated toric variety. This is the content of Birch’s Theorem, illustrated in Figure 2.2.

Theorem 2.2.11 (Birch’s Theorem, [DSS08, Prop. 2.1.5]). Let u ∈Nn
>0 be a positive data vector

and letMA,z be a log-affine model as in (2.2.1). Then the MLE p̂ ∈ MA,z for data u is the unique
nonnegative solution to the system of equations

Ap̂ = Au and p̂ ∈ XA,z.
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Figure 2.2: An illustration of Birch’s Theorem: the MLE (green) is the unique intersection
point of a linear space (red) with the positive part (blue) of a toric variety (blue and yellow).

As a consequence, for generic scaling parameters z, the scaled toric variety XA,z has
MLdeg(XA,z) = deg(XA,z), which, by Theorem 2.1.8, is just the normalised volume of
the associated polytope conv(A). However, for non-generic z, the ML degree can drop.
We have already seen an instance of this phenomenon: the variety XA representing the
independence model of two binary random variables has degree two (Example 2.1.9),
however, the ML degree (for the scaling z = (1, 1, . . . , 1)) is equal to one (Example 2.2.10).
Determining when and how this happens is precisely the content of Problem 3.0.1.

We now turn to a more geometric formulation of the ML degree in terms of an Euler
characteristic of a very affine variety. A very affine variety is a variety admitting a closed
embedding into an algebraic torus. Let φ : Pn−1 99K (C∗)n be the rational map defined by
[p1 : · · · : pn] 7→ 1

p1+···+pn
(p1, . . . , pn). Restricted to X \ H, where H is the distinguished

hyperplane arrangement (2.2.4), the map φ gives a closed embedding of X \ H into (C∗)n,
turning X \ H into a very affine variety. Then there is the following result.

Theorem 2.2.12 ([Huh13, Thm. 1]). If X \H is a smooth very affine variety of dimension d, then

MLdeg(X) = (−1)dχ(X \ H),

where χ denotes the topological Euler characteristic.

Example 2.2.13 ([HS14, p. 72]). Again, consider the independence model XA
∼= P1 × P1

from Examples 2.1.2 and 2.2.3. Let us choose coordinates ((x1 : x2), (y1 : y2)) on P1 ×P1.
Then the distinguished hyperplane arrangement H can be written as

H = V(x1x2y1y2(x1 + x2)(y1 + y2)).

Therefore, XA \ H =
(
P1 \ V(x1x2(x1 + x2))

)
×
(
P1 \ V(y1y2(y1 + y2))

)
. Each factor is

a P1 with three points removed. By the excision property of the Euler characteristic,
each factor has Euler characteristic (−1), therefore χ(XA \ H) = 1. This confirms that
MLdeg(XA) = 1, as already seen in Example 2.2.10. ♢

The case where a model has ML degree one is of particular interest: in this case the
coordinate functions of Φ are rational functions in the data u, thus the MLE has a closed
form expression. This is in fact completely determined in terms of a Horn matrix as we
explain below, following [Huh14, DMS21]. It is an open problem in algebraic statistics
to characterise the class of toric varieties with ML degree one and their respective Horn
matrices. Only for toric surfaces such a classification is known [DDPS23].
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Definition 2.2.14. A Horn matrix is an r × n integer matrix with all column sums being
zero. Given a Horn matrix H with columns h1, h2, . . . , hn and a vector λ ∈ Rn, the Horn
parametrisation φ(H,λ) : Rn → Rn is the rational map defined by

u 7→ λ ⋆ (Hu)H =
(

λ1(Hu)h1 , λ2(Hu)h2 , . . . , λn(Hu)hn
)

.

Here, ⋆ denotes the (entrywise) Hadamard product, and for two vectors u, v ∈ Rr we use
the shorthand notation uv = ∏r

i=1 uvi
i .

Definition 2.2.15. The pair (H, λ) is called a Horn pair if

1. the coordinates of φ(H,λ) sum up to one, i.e.

λ1(Hu)h1 + λ2(Hu)h2 + · · ·+ λn(Hu)hn = 1, and

2. φ(H,λ) is defined for all positive vectors and maps these to positive vectors.

An example for a Horn pair is given in Example 3.1.7. The relation to maximum
likelihood estimation becomes apparent in the following statement.

Theorem 2.2.16 ([DMS21, Thm. 1]). IfM is a statistical model with ML degree one, there exists
a Horn pair (H, λ) such that the maximum likelihood estimator Φ forM satisfies Φ = φ(H,λ).

2.3. Commutative algebra

In this section we introduce some concepts from commutative algebra that are beyond the
standard curriculum as for example in [AM18]. The first such concept is the Rees algebra
of a module. We are following [EHU03, SUV03, KKM+24a] in this exposition.

Let R be a Noetherian ring. The Rees algebra of an ideal I ⊆ R is a well-known object
as it appears as the blowup algebra. More precisely, the Rees algebra of I is the algebra

R(I) =
∞⊕

n=0

In = R[Is] ⊆ R[s].

If Z = V(I) is the variety defined by I, the blowup of Spec(R) along Z is described by
R(I), i.e. BlZSpec(R) = Proj(R(I)). To define the Rees algebra of a module, one wishes
to embed the module into a free module and define the Rees algebra as the image of the
symmetric algebra of that module. However, this construction should not depend on the
chosen embedding. One way to circumvent this problem is to find a versal embedding into
a free module. This approach is equivalent to the following. Let M be a finitely generated
R-module with m generators. The symmetric algebra of M is a commutative R-algebra with
m generators that satisfy the same relations as the generators of M. More precisely, if
M = coker(A) for some matrix A ∈ Rm×l , then

Sym(M) = R[s1, . . . , sm]
/
⟨ (s1, . . . , sm) A ⟩ . (2.3.1)

Definition 2.3.1. Let R be a Noetherian domain and let M be a finitely generated R-
module. The Rees algebra R(M) of M is the quotient of the symmetric algebra Sym(M) by
its R-torsion submodule, R(M) = Sym(M)/T .
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The Rees algebra can also be defined over rings that are not domains (see [EHU03]), but
we won’t need this definition here. If the symmetric algebra Sym(M) has no R-torsion, the
module M is of linear type and R(M) = Sym(M). The following is derived from [EHU03].

Proposition 2.3.2. Let R and M be as in Definition 2.3.1. Then R(M) is a domain.

Lastly, we will need the following fact from [Eis18, § 2].

Proposition 2.3.3. Taking the Rees algebra commutes with localisation.

We now turn to more general results from commutative algebra that we will use in
later sections. The following statement offers a useful criterion for minimality of a graded
resolution and can be found in [SV86, §0, Lem. 4.4].

Lemma 2.3.4. Let k be a field and let R be a Noetherian graded k-algebra with maximal ideal m =⊕
i≥1 Ri. Moreover, let M be a finitely generated graded R-module with a graded free resolution,

· · · → Fi
φi−→ Fi−1

φi−1−−→ . . .
φ1−→ F0

φ0−→ M→ 0, (2.3.2)

where each Fi is finitely generated. Assume we are given bases of Fi for i ≥ 0, and matrices
representing φi for i ≥ 1. Then (2.3.2) is minimal if and only if all matrix entries lie in m.

The following is a classical result and can be found e.g. in [Eis13, Thm. 20.15].

Theorem 2.3.5 (Hilbert–Burch). Let R be a local ring with an ideal I ⊂ R such that

Rn f−→ Rm → R→ R/I → 0

is a free resolution of R/I, then m = n− 1 and I = aJ where a is a regular element of R and J is a
depth-two ideal generated by all m×m minors of the matrix representing f .

Finally, we will need the first hypertor spectral sequence, see [Wei94, Appl. 5.7.8].

Theorem 2.3.6 (First hypertor spectral sequence). Let R be a ring, A• a complex of R-modules
and B an R-module. Then the following spectral sequence converges:

E1
pq = TorR

q (Ap, B)⇒ TorR
p+q(A•, B).

2.3.1. Symmetric tensor decomposition
This exposition on symmetric tensor decomposition appeared as Section 3.1 in [KLW24a].

An order-r tensor is a multidimensional array in Kn1×...×nr , where K is a field. To us,
the case of primary interest is K = R. A tensor T = (Tj1 ...jr) ∈ Rd0×...×d0 is symmetric
if Tj1...jr = Tσ(j1)...σ(jr) for all permutations σ ∈ Sr. Given an order-r symmetric tensor
T = (Tj1...jr) of format d0 × d0 × · · · × d0, one can associate the following homogeneous
polynomial of degree r in d0 variables to the tensor T:

F(x) = ∑
1≤j1,j2,...,jr≤d0

Tj1 j2 ...jr xj1 xj2 · · · xjr . (2.3.3)

Monomials generally appear more than once in the sum above.
For i = (i1, . . . , id0) ∈Nd0 with i1 + . . . + id0 = r, we define the multinominal coefficient(

r
i1, . . . , id0

)
=

r!
i1! · · · id0 !

.
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Using multinomial coefficients, the polynomial (2.3.3) can be rewritten as

F(x) = ∑
i1+i2+...+id0=r

(
r

i1, . . . , id0

)
ai1i2...id0

xi1
1 xi2

2 · · · x
id0
d0

(2.3.4)

such that each monomial appears precisely once in the sum.
To obtain the converse map from homogeneous polynomials to symmetric tensors, we

note that there is a bijection between the monomials of degree r in d0 variables and unique
entries of a general order-r symmetric tensor of format d0 × d0 × · · · × d0. The bijection is
given by the map f : Nd0 → Nr, i 7→ j, where ik denotes the number of appearances of k
in j and the entries of j are in ascending order. The homogeneous polynomial (2.3.4) maps
to the symmetric tensor T with the entries

Tj = a f−1(j),

where the entries of j are in ascending order. The remaining entries of T are obtained via
symmetry. For more details on the bijection, we refer the reader to [CM96, CGLM08].

The outer product of r vectors vi ∈ Rni is an order-r tensor defined as

v1 ⊗ . . .⊗ vr = (v1,i1 · · · vr,ir)
n1,...,nr
i1,...,ir=1.

Definition 2.3.7. Let T ∈ Kd0×...×d0 be a symmetric tensor. The symmetric rank of T over a
field K is the smallest k ∈N such that

T =
k

∑
i=1

λivi ⊗ . . .⊗ vi,

where λi ∈ K and vi ∈ Kd0 for i ∈ [k]. If K = R (respectively K = C), then we call it the
real (respectively complex) symmetric tensor rank.

For symmetric matrices (i.e. order-two tensors), the symmetric rank is equal to the rank.
It is currently unknown whether this is also true for higher order tensors, see [Dra24].

Let I1 ∪ I2 = [r] be a partition of the set [r]. Let Dj = ∏i∈Ij
ni for j = 1, 2. Every partition

I1∪ I2 = [r] induces a flattening of a tensor T ∈ Kn1×...×nr to a matrix in KD1×D2 . The minors
of flattenings yield relations that hold for low rank tensors. For example, a nonzero tensor
has rank one if and only if all 2× 2 minors of all its flattenings vanish [Lan11, §3.4].

Example 2.3.8. Fix d0 = 2 and r = 3. Then we consider binary cubics or, equivalently,
order-three 2× 2× 2 symmetric tensors. The polynomial x3

1 + 3x1x2
2 + 3x3

2 corresponds to
the symmetric tensor whose flattening induced by the partition {1, 2} ∪ {3} is(

1 0 0 1
0 1 1 3

)T

. ♢

2.4. Hypersurface arrangements
In this section we recall some basic notions of hypersurface arrangements, in particular
modules of logarithmic derivations and differential forms. Most of these are very well-
known for hyperplane arrangements, see e.g. [OT13]. Hypersurface arrangements are less
commonly studied, but many concepts generalise straightforwardly. We follow [DS09,
DSS+13] in this exposition. Some of this is material appeared in [KKM+24a, §2, §5].
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Let { f1, f2, . . . , fm} ∈ R = C[x1, . . . , xn] a finite set of homogeneous polynomials. The
union A of their vanishing loci, A =

⋃m
i=1 V( fi) ⊆ Pn−1 is a hypersurface arrangement.

Sometimes, by abuse of terminology, we also call the collection of polynomials itself an
arrangement of hypersurfaces and write A = { f1, f2, . . . , fm}. If all fi are linear, A is a
hyperplane arrangement. Let f = ∏m

i=1 fi be the defining polynomial of A. Unlike e.g.
[Dup15], we do not require V( fi) to be smooth or irreducible. However, we do want that
the divisor associated to A is reduced, so we assume that the polynomial f is squarefree.

For an S-algebra T, let DerS(T) be the T-module of S-linear derivations on T, i.e. S-linear
maps d : T → T satisfying the Leibniz rule d(ab) = ad(b) + bd(a). If S = C we may omit
the subscript and simply write Der(T).

Definition 2.4.1. The module of logarithmic A-derivations DerS(A) is defined by

DerS(A) = {θ ∈ DerS(T) : θ( f ) ∈ ⟨ f ⟩} . (2.4.1)

The notion depends on the S-algebra T which is, however, not apparent in the notation
since it will be clear from the context. We simply write Der(A) if S = C and T = R.

Dual to the module of derivations, we have the T-module of S-valued Kähler differen-
tials Ω1

T/S = Hom(DerS(T), T), and the modules of Kähler p-forms Ωp
T/S =

∧p Ω1
T/S. Let

Ωp
T/S(⋆A) = Ωp

Tf /S be the Tf -module of S-valued rational differential p-forms with poles
along the hypersurface arrangement A. Here, Tf denotes localisation of T at f .

Definition 2.4.2. The module Ωp
T/S(A) of logarithmic p-forms with poles along A is given by

Ωp
T/S(A) =

{
ω ∈ Ωp

T/S(⋆A) : f ω ∈ Ωp
T/S and f dω ∈ Ωp+1

T/S

}
.

If S = C and T = R we simply write Ωp(A).

Modules of logarithmic differential forms are naturally graded as follows. Let ω ∈
Ωp(A). By definition, f ω ∈ Ωp and we can write f ω = ∑I gI dxI . Then we define the
degree of ω to be deg(ω) = p + deg(gI)− deg( f ). We write Ω•(A)k for the kth graded
part of Ω•(A). In the following we collect some key properties, see [DSS+13, §1].

Proposition 2.4.3. 1. The module Der(A) always contains the Euler derivation

θE =
n

∑
i=1

xi∂xi .

It induces a splitting Der(A) ∼= Der0(A)⊕ RθE by writing θ = θ′ + 1
deg( f )

θ( f )
f θE.

2. There is a perfect pairing

Der(A)×Ω1(A)→ R,

(
n

∑
i=1

θi∂xi ,
n

∑
i=1

ηi dxi

)
7→

n

∑
i=1

θiηi.

3. There is an identification

Der(A) ∼−→ Ωn−1(A), θ 7→ 1
f

n

∑
i=1

(−1)i−1θ(xi)dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

4. The natural map jp :
∧p Ω1(A)→ Ωp(A) is injective.
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5. Ωp(A) is reflexive for all p, i.e. Ωp(A)∨∨ ∼= Ωp(A).

In the hyperplane arrangement literature, there has been a large focus on free arrange-
ments. The famous Terao conjecture states that freeness is a combinatorial property, i.e. it
only depends on the underlying matroid [Ter80].

Definition 2.4.4. A hypersurface arrangement A is free if Der(A) is a free R-module.

Another well-studied property of arrangements is tameness which is a weakening of
the freeness property. Analogously to the hyperplane case (see e.g. [CDFV11, Def. 2.2]),
we define it as follows.

Definition 2.4.5. A hypersurface arrangement A is tame if

pdR(Ω
p(A)) ≤ p for all 0 ≤ p ≤ n.

Clearly, every free arrangement is tame. The converse is not true, as can be seen e.g. in
Example 3.3.17, for the arrangement of four random ternary quadrics and a line.

Hyperplane arrangements. We now turn to the specific case where all polynomials fi
are linear, so A is a hyperplane arrangement. There is a useful criterion to check whether
the arrangement is free, known as Saito’s criterion.

Theorem 2.4.6 (Saito’s criterion, [Sai80]). Let θ1, . . . , θn ∈ Der(A) be logarithmic derivations
and let Θ be the n× n matrix defined via Θij = θj(xi). The following are equivalent:

1. det(Θ) = u f , where u ∈ C∗,

2. Der(A) is free with basis {θ1, . . . , θn}.

Moreover, for hyperplane arrangements there exists the notion of localisation. Let A be
a hyperplane arrangement and let L(A) denote the intersection lattice of the hyperplanes
Hi = { fi = 0} for fi ∈ A. If X ∈ L(A) then the localisation of A at X is

AX = { fi ∈ A : X ⊆ Hi}.

A specific class of hyperplane arrangements are graphic arrangements, which constitute
a prominent topic in combinatorics. Let G = (V, E) be a simple undirected graph with
vertex set V = {1, . . . , n}. The graphic arrangement A(G) consists of the hyperplanes{

xi − xj : {i, j} ∈ E
}

. This arrangement lives in Pn−1, but we can also view it in the space
Pn−2 obtained by projecting from the point (1 : 1 : · · · : 1) which lies in all hyperplanes.

2.5. Neural networks
In this section we provide the very basic setup for the study of neural networks, following
the expository sections in [KLW24a, §2, §6].

A general L-layer (feedforward) neural network is a composition of L affine-linear maps
with coordinatewise nonlinearity in between [Hay98]. More precisely, let Fθ be a feedfor-
ward neural network with parameters θ, then it can be written as

Fθ(x) = fL ◦ σL−1 ◦ fL−1 ◦ · · · ◦ f2 ◦ σ1 ◦ f1(x),

where
fl(x) : Rdl−1 → Rdl , x 7→Wlx + bl
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Figure 2.3: A neural network architecture with widths d = (2, 3, 3, 1), input x = (x1, x2)T

and output y1.

and the function σl : Rdl → Rdl is the activation function, typically a real function that
is applied coordinatewise, i.e. σl = (σl,1, . . . , σl,dl ) with σl,j : R → R. The entries of the
matrices W1, . . . , WL are the weights w of the neural network, and b1, . . . , bL are referred to
as the biases. Together, the weights and biases constitute the parameter set θ.

Pictorially, a neural network architecture can be represented as in Figure 2.3. Each
node is called a neuron and each column of neurons forms a layer of the network. The
first layer is called input layer, the last layer is called output layer and the remaining layers
are referred to as hidden layers. A neural network with exactly one hidden layer is called
shallow. The number di of neurons in the ith layer is the ith width. The vector of widths
d = (d0, d1, . . . , dL) and a choice of activation functions σ = (σ1, σ2, . . . , σL−1) constitute the
architecture of the network. Arrows between layers represent the maps fl . All architectures
in this thesis are considered to be fully-connected feedforward neural networks.

The goal of deep learning is to approximate a target function f : Rd0 → RdL with a
neural network Fθ of a chosen architecture (d = (d0, d1, . . . , dL), σ). This amounts to an
optimisation task over the space of parameters, the “learning” or “training” process.

The parameter map
Ψd,σ : RN → Fun(Rd0 , RdL), θ 7→ Fθ

associates a tuple of parameters θ with the corresponding neural network Fθ. Its image
is called the neuromanifold1 Md,σ and consists of all functions a network with architecture
(d, σ) can learn. The neuromanifold is also referred to as functional space in the literature.

Typical choices of activation functions are ReLU or sigmoid functions

σReLU(x) = max{0, x}, σsigmoid(x) =
ex

1 + ex .

In Chapter 4 we study networks where the activation function is given by coordinatewise
exponentiation σ(x) = xr, leading to polynomial neural networks.

In supervised machine learning tasks, a neural network is trained through empirical risk
minimisation (ERM). Consider a training dataset D = {(x1, y1), . . . , (xN , yN)}, where each
xi is an input vector and yi is the corresponding output or label. The objective in ERM is to
find a function f ∗ from a hypothesis space H that minimises the empirical risk R̂, which
is defined as the average loss over the training data

R̂( f ) =
1
N

N

∑
i=1

L(yi, f (xi)).

1The term neuromanifold is used by an abuse of terminology as this space is rarely a smooth manifold.
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Here, L is a loss function measuring the discrepancy between the predicted value f (xi)
and the actual label yi. The function sought after is then

f ∗ = arg min
f∈H

R̂( f ). (2.5.1)

To minimise R̂, gradient-based optimisation methods such as (stochastic) gradient de-
scent are commonly used. For convex objective functions, gradient-based algorithms can
converge to the unique global minimum with appropriate hyperparameter choices. How-
ever, when optimising neural networks, the loss landscape is typically non-convex. As a
result, there is generally no theoretical guarantee that gradient-based methods will reach
a global optimum f ∗ for feedforward neural networks.

In the neural network setting, the hypothesis class H is the corresponding neuromani-
fold, and the empirical minimisation problem becomes

θ∗ = arg min
θ

ℓFθ
where ℓFθ

:=
1
N

N

∑
i=1

ℓ(yi, Fθ(xi)) (2.5.2)

For example, choosing the ℓ2 loss, we minimise the average distance between Fθ(x) and y.

To solve for (2.5.1), one mostly uses iterative optimisation algorithms, including gra-
dient descent and its variants, to find a local minimum of the objective function. In each
step, the parameter vector θ is adjusted in the direction opposite to the gradient of the
function at the current point, as the gradient points in the direction of the steepest ascent.
The update rule at step t can be expressed as

θ(t+1) = θ(t) − η∇θℓF
θ(t)

. (2.5.3)

The tuning parameter η is referred to as the learning rate of the optimisation process.
In practice, the value of η is crucial as it determines how big a step is taken on each
iteration. If η is too small, the algorithm may take too long to converge; if it is too large,
the algorithm may overshoot the minimum or fail to converge.

To compute the gradient of the loss function in (2.5.3) efficiently one uses the backprop-
agation algorithm. Since Werbos introduced this algorithm in his 1974 PhD thesis [Wer74],
backpropagation lies at the heart of modern successes in deep learning. We give a brief
overview of the backpropagation algorithm following [Nie15, Ch. 2].

Let ℓ be a loss function (e.g. as in (4.3.1)) satisfying the following assumptions:

1. ℓ is smooth;

2. ℓ can be written as ℓ = ∑N
j=1 ℓx̂j , where each ℓx̂j depends only on the sample x̂j;

3. ℓ depends only on the output of the network Fθ(x), not on the state of intermediate
layers; the training data f (x̂j) are considered as parameters.

Backpropagation provides a way to compute the gradient ∇wℓ(x̂1, . . . , x̂N) efficiently. In
particular, if ℓx̂ is chosen to be simply the network Fθ(x̂) evaluated at the samples, this gives
a way for computing the gradient ∇wFθ(x̂) of the neural network itself. This observation
is used in Subsection 4.2.3 to compute the dimension of a neuromanifold efficiently.

Let zl
j denote the input into the jth neuron of the lth layer. The error δl

j of this neuron is

δl
j :=

∂ℓ

∂zl
j
.
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Theorem 2.5.1 ([Nie15]). Let al
j be the output of the jth neuron in the lth layer, and let L denote

the last layer of the network. Then the following equations hold:

δL
j =

∂ℓ

∂aL
j

σ′L,j(z
L
j ), δl

j = σ′l,j(z
l
j)

dl

∑
k=1

wl+1,j,kδl+1
k ,

∂ℓ

∂wl,j,k
= al−1

k δl
j .

Here, σ′l,j is the derivative of the single-variable activation function of the jth neuron in the lth layer.

Proof. These are simple consequences of applying the chain rule.

These equations give rise to Algorithm 1 below. The idea is to first compute the outputs
of each neuron al

j via a “forward” run through the network and then compute the errors δl
j

using the first two equations of Theorem 2.5.1 running “backwards” through the network.
Finally, the gradient can be computed using the third equation from Theorem 2.5.1.

Algorithm 1 Backpropagation
Input: A neural network Fθ and a loss function ℓ with single input sample x̂
satisfying the assumptions above
Output: The gradient ∇wℓ(x̂), where w are the weights of Fθ

1: a0 ← x̂
2: for l from 1 to L: do ▷ forward loop
3: zl ←Wlal−1

4: al ← σl(zl)
5: end for
6: δL ← ∇aℓ ⋆ σ′L(z

L) ▷ ⋆ denotes the Hadamard (elementwise) product
7: for l from L− 1 to 1: do ▷ backward loop
8: δl ← (WT

l δl+1) ⋆ σ′l (z
l)

9: end for
10: return ∇wℓ(x) = (al−1

k δl
j)j,k,l

2.6. Quantum information theory
In this section we collect some fundamental notions of quantum information theory. This
exposition is taken from [DPW23a, §2, App. A]. The reader is referred to [Lan19],[NC02,
Part III] for more detailed introductions to the subject.

A quantum state on N qudits is represented by a vector |ψ⟩ ∈ H = H1 ⊗ · · · ⊗ HN of
unit length, where Hi is the Hilbert space Hi

∼= Cd, i = 1, . . . , N. Here, we make use of the
Dirac notation, i.e. |ψ⟩ denotes a column vector and ⟨ψ| its complex conjugate transpose.
In the case N = 1 and d = 2, |ψ⟩ is called a qubit and this will be our primary focus.

An ensemble of quantum states is a collection {pi, |ψi⟩}i where {pi}i is a discrete prob-
ability distribution. Besides the uncertainty inherent to quantum systems through super-
positions, ensembles of quantum states take a further statistical uncertainty into account.
Such an ensemble is described by its density matrix

ρ = ∑
i

pi|ψi⟩⟨ψi|.

Equivalently, we can characterise density matrices as positive semidefinite endomorphisms
on H with unit trace. From now on, we will use the terms “quantum state” and “density
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matrix” interchangeably. If ρ has rank one, i.e. ρ is of the form ρ = |ψ⟩⟨ψ|, we call ρ a pure
state; otherwise, it is mixed. The set of all density matrices on H is denoted by D(H).

Let ρAB be a bipartite quantum state, i.e. a density operator on HA ⊗HB. We define
the partial trace over the B-system on elementary tensors via

TrB(|ai⟩⟨aj| ⊗ |bk⟩⟨bl |) := |ai⟩⟨aj| · Tr(|bk⟩⟨bl |) = |ai⟩⟨aj| · ⟨bl |bk⟩,

where |ai⟩, |aj⟩ ∈ HA and |bk⟩, |bl⟩ ∈ HB, and extend this operation linearly to ρAB. Note
that TrB ρAB is a density operator on HA, and therefore we use the notation ρA := TrB ρAB.
One can think of the partial trace operation as the quantum analogue of marginalisation in
statistics. Physically speaking, ρA describes the state of the subsystem A of the composite
system AB. It can be shown that the partial trace is the unique sensible way to obtain the
state of a subsystem, see [NC02, p. 107].

Example 2.6.1. Set |0⟩ := (1, 0)T, |1⟩ := (0, 1)T as a basis of C2 (this basis is called compu-
tational basis in the context of quantum information theory); we also adapt the notation to
write |ij⟩ for |i⟩ ⊗ |j⟩, i, j ∈ {0, 1}. Consider the Bell state

ρAB =
(

1√
2
(|00⟩+ |11⟩)

) (
1√
2
(⟨00|+ ⟨11|)

)
= 1

2 (|00⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨00|+ |11⟩⟨11|)

on C2 ⊗C2. Then the partial trace over B is computed as

TrB ρAB = 1
2 (|0⟩⟨0|⟨0|0⟩+ |0⟩⟨1|⟨1|0⟩+ |1⟩⟨0|⟨0|1⟩+ |1⟩⟨1|⟨1|1⟩) =

1
2 (|0⟩⟨0|+ |1⟩⟨1|) =

1
2 Id2.

This is the maximally mixed state, meaning ρAB is maximally entangled [NC02, §2]. Notice
that we started with a pure state ρAB with no statistical uncertainty about the state, and
ended up with a mixed state with maximal statistical uncertainty. In other words, without
knowing what state system B is in, we are uncertain whether system A is in state |0⟩⟨0| or
|1⟩⟨1|. The concept of entropy (see Subsection 5.1.1) captures this uncertainty. ♢

When we speak of a Hamiltonian H, we simply mean a real symmetric matrix. The
reason we restrict to this class (and do not consider Hermitian matrices as would be natural
in many contexts in quantum physics) is that symmetric matrices form a linear space,
while the set of Hermitian matrices is not an algebraic variety. Likewise, in Section 5.1
we consider density matrices to be real positive semidefinite (PSD). Note that exp(H) is
positive definite and thus can (up to normalisation) be regarded as a quantum state.

We now briefly describe the stabiliser formalism. This framework is commonly used in
quantum error correction for a very convenient description of quantum code spaces. In
this exposition we follow [NC02, §10.5.1].

The three Pauli matrices are the Hermitian matrices

σX =

(
0 1
1 0

)
, σY =

(
0 −i
i 0

)
, σZ =

(
1 0
0 −1

)
,

called Pauli-X, Pauli-Y and Pauli-Z matrix, respectively. In quantum mechanics, these
matrices play a fundamental role as observables. They satisfy the commutation relation

[σj, σk] = 2iϵjklσl , (2.6.1)

where ϵjkl is the Levi-Civita symbol, and we denote σ1 = σX, σ2 = σY and σ3 = σZ. The
Pauli group P1 is the group

P1 := {±Id2,±iId2,±σX,±iσX,±σY,±iσY,±σZ,±iσZ}.
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The set of all N-fold tensor products of elements of P1 equipped with multiplication as the
group operation forms the Pauli group PN of order 4N+1. Any subgroup S ≤ PN of the
Pauli group acts on the vector space of N qubit states by multiplication. The vector space
stabilised by S is denoted VS, and we call S the stabiliser of VS. In quantum error correction,
VS is the code space. The generators of S provide an efficient description of VS.

Let S be generated by S = ⟨p1, . . . , pl⟩; the generators p1, . . . , pl are called independent if
for all i = 1, . . . , l : ⟨p1, . . . , p̂i, . . . , pl⟩ ⪇ S, where the hat means that the element is omitted.
The following standard fact is used in Subsection 5.1.6, and we provide a proof to make
the reader more familiar with the concepts.

Lemma 2.6.2 ([NC02, Prop. 10.5]). Let S = ⟨p1, . . . , pN−k⟩ ≤ PN be a subgroup of the Pauli
group generated by N − k independent and commuting Pauli product matrices such that −Id2N /∈
S. Then VS has dimension 2k.

Proof. First note that any Pauli matrix σ ∈ {σX, σY, σZ} has eigenvalues ±1, and the pro-
jector on the ±1-eigenspace of σ is Id2±σ

2 . For any x = (x1, . . . , xN−k) ∈ (Z/2Z)N−k, define

Px
S :=

1
2N−k

N−k

∏
j=1

(Id2N + (−1)xj pj);

clearly, P0
S is the projector onto VS.

Claim 2.6.3. For any x ∈ (Z/2Z)N−k, dim(im(Px
S)) = dim(im(P0

S)).

We represent a Pauli product matrix p ∈ PN as a (row) vector vp ∈ (Z/2Z)2N via

(vp)i =


1 if i ≤ N and the ith tensor factor of vp is either σX or σY,
1 if i > N and the (i− N)th tensor factor of vp is either σZ or σY,
0 else.

Then two Pauli product matrices p, p′ ∈ PN commute if and only if vpΛvT
p′ = 0, where Λ

is the 2N × 2N matrix

Λ =

(
0 IdN

IdN 0

)
.

Let p1, . . . , pN−k be the independent generators of S. For any i = 1, . . . , N − k there exists
a p ∈ PN such that ppi p† = −pi and ppj p† = pj for all j ̸= i. Indeed, consider the
(N− k)× 2N matrix P with rows vp1 , . . . , vpN−k ; as the generators are independent, one can
check that the rows of P are linearly independent. Therefore, the linear system PΛx = ei,
where ei is the ith standard basis vector, has a solution, say s ∈ (Z/2Z)2N . Then we
define p ∈ PN by vp = sT. Thus, for any j ̸= i we have vpj Λvp = 0, so p and pj commute
and ppj p† = pj. Moreover, vpi Λvp = 1, hence ppi p† = −pi. This shows that for any
x ∈ (Z/2Z)N−k, there exists px ∈ PN such that Px

S = pxP0
S p†

x, proving the claim.

Let x, x′ ∈ (Z/2Z)N−k be two distinct vectors, i.e. there exists an i ∈ {1, . . . , N − k}
such that xi ̸= x′i. Then im(Px

S) and im(Px′
S ) are orthogonal. Indeed, the Hilbert–Schmidt

inner product between Px
S and Px′

S evaluates to

⟨Px
S , Px′

S ⟩ =
1

22(N−k)
Tr

(
(Id + pi)(Id− pi)∏

j ̸=i
(Id + (−1)xj pj)(Id + (−1)x′j pj)

)
= 0
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as (Id + pi)/2 and (Id− pi)/2 are projectors on complementary eigenspaces of pi. Finally,

∑
x∈(Z/2Z)N−k

Px
S = Id2N ,

so the 2N−k many vector spaces im(Px
S) form an equidimensional partition of C2N

, hence
dim(VS) = dim(im(P0

S)) = 2k.

In this chapter we have introduced basic notions from various branches of mathematics
and its applications. We hope this equips the reader with sufficient background material
to follow the presentation in subsequent chapters. The need for preliminary material is,
however, highly subjective, and throughout the text we provide references to more detailed
expositions the reader might wish to consult.
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Chapter 3

Likelihood geometry

In this chapter we study the problem of maximum likelihood estimation from a geometric
viewpoint. Throughout this chapter, the guiding problem is the following.

Problem 3.0.1. Given a scaled projective toric variety XA,z, what is MLdeg(XA,z)? How
does it depend on the scaling z, and what is the parameter locus Z ⊆ (C∗)n such that for
z ∈ Z, XA,z attains a certain ML degree?

Firstly, in Section 3.1, we focus on the case of ML degree one. The toric fibre product is a
combinatorial way to construct higher dimensional toric varieties from lower dimensional
ones. We study the relation between toric fibre products and Horn matrices, determining
the parametrisation of the MLE. Moreover, this gives rise to applications in geometric
modelling, constructing novel blending functions. This section is based on [DHW23].

In Section 3.2, taken from [TW24a], we take a more holistic view on Problem 3.0.1. We
introduce the notion of Euler stratifications and develop algorithms to compute these for
hypersurface families. In particular, this gives a computational answer to Problem 3.0.1,
as the stratification of Z into parameter loci where MLdeg(XA,z) is constant can be seen as
an Euler stratification. Furthermore, we apply our algorithms to particle physics, where
the Euler characteristic of a very affine variety measures the number of master integrals.

The last part, Section 3.3, is based on [KKM+24a] and considers statistical models in a
parametric description. This is done by connecting likelihood geometry with the theory of
hypersurface arrangements. In particular, we describe a new way to compute the ideal of
the (parametric) likelihood correspondence via the Rees algebra of the likelihood module.
This module is closely connected to the module of logarithmic derivations which is well-
studied in the arrangement literature.



3.1. Toric fibre products: Horn matrices and geometric
modelling

The toric fibre product (TFP), introduced by Sullivant [Sul07], is an operation that takes
two toric varieties X1, X2 and, using compatibility criteria determined by a multigrading
A, creates a (usually) higher dimensional toric variety X1×A X2. This operation is used to
construct a Markov basis for X1×A X2 by using Markov bases of X1 and X2. Interestingly,
the ML degree of a TFP is the product of the ML degrees of its factors, therefore the TFP
of two models with ML degree one yields a model with ML degree one [AKK20]. The
Cartesian product of two statistical models is an instance of a TFP. Another example is
the class of decomposable graphical models, each of these models has ML degree one and
can be constructed iteratively from lower dimensional ones using TFPs [Sul07, Lau96]. We
investigate the relation between the combinatorially constructed TFPs and categorical fibre
products of abstract normal toric varieties in Subsection 3.1.2.

For a variety with ML degree one, the Horn matrix describes the rational maximum
likelihood estimator, see Definition 2.2.15 and the paragraph thereafter. In the toric case,
sometimes geometric information about the associated polytope determines a Horn ma-
trix for the model. Instances of these phenomena are present in the characterisation of
polytopes with the more restrictive property of strict linear precision [CC20], and in the
classification of two-dimensional toric models with ML degree one [DDPS23]. With this
perspective in mind, in Subsection 3.1.3, we present an explicit construction of a Horn ma-
trix for the toric fibre product of two toric varieties with ML degree one. This construction
reformulates [AKK20, Thm. 5.5] in terms of Horn matrices.

Geometric modelling is, broadly speaking, the study of how geometric objects can best
be represented by a computer. Blending functions provide parametrisations employed in
CAD software used by architects to model buildings. These blending functions are asso-
ciated to polytopes and have desirable characteristics if the polytope has the property of
rational linear precision. It is an open problem to classify polytopes in dimension d ≥ 3 hav-
ing rational linear precision [CC20]. There is a remarkable connection between geometric
modelling and algebraic statistics: a polytope has rational linear precision if and only if its
corresponding toric variety has ML degree one [GPS10]. Inspired by algebraic statistics,
we introduce the toric fibre product construction to geometric modelling. In statistics, the
interest is in the closed form expression for the MLE; in geometric modelling, the interest
is in finding blending functions defined on the polytope satisfying the property of linear
precision. Our main Theorem 3.1.14 gives an explicit formula for the blending functions
defined on the toric fibre product of two polytopes that have rational linear precision.

3.1.1. Toric fibre products via point configurations
In the paper [Sul07], toric fibre products are introduced algebraically on the level of ideals.
Here, we take a different approach and define toric fibre products combinatorially via
point configurations. These two approaches yield the same object, see Remark 3.1.4.

Let r ∈ N and si, ti ∈ N for 1 ≤ i ≤ r. Fix integral point configurations A = {ai : i ∈
[r]} ⊆ Zd, B = {bi

j : i ∈ [r] , j ∈ [si]} ⊆ Zd1 and C = {ci
k : i ∈ [r] , k ∈ [ti]} ⊆ Zd2 . For any

point configuration P, we use P interchangeably to denote a set of points or the matrix
whose columns are the points in P; the symbol |P| will be used to denote the indexing set
of P. For each i ∈ |A|, set Bi = {bi

j : j ∈ [si]} and Ci = {ci
k : k ∈ [ti]}. The indices i, j, k are

reserved for elements in |A|, |Bi| and |Ci|, respectively.
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Definition 3.1.1. A point configuration B ⊂ Zd1 is multigraded by A ⊂ Zd if there exists a
linear map deg : Zd1 → Zd such that deg(bi

j) = ai for all i ∈ |A| and j ∈ |Bi|.

Throughout, we assume linear independence of A and the existence of an ω ∈ Qd

such that ωai = 1 for all i; the latter condition ensures that if a toric ideal is homogeneous
with respect to a multigrading A then it is also homogeneous in the usual sense. Linear
independence of A implies that only the cardinality of A is relevant. Moreover, we always
assume that a row of all-ones is the first row of the matrices B and C so to meet the
assumptions of Section 2.1. This row of all-ones is omitted from notation.

Definition 3.1.2. The toric fibre product (TFP) of two integral point configurations B and C
multigraded by A is the point configuration B×A C given by

B×A C = {(bi
j, ci

k) : i ∈ |A|, j ∈ |Bi|, k ∈ |Ci|}.

The definition above gives rise to a definition of toric fibre products of toric varieties
as follows. Let z and z̃ be vectors of weights for B and C, respectively, i.e. z ∈ (C∗)|B| and
z̃ ∈ (C∗)|C|. We set the vector of weights for B×A C to be

zB×AC := (zi
j z̃

i
k)

i∈|A|
(j,k)∈|Bi×Ci |.

Definition 3.1.3. Let B and C be point configurations multigraded by A, and let XB,z and
XC,z̃ be scaled projective toric varieties (see Definition 2.1.1). The toric fibre product between
XB,z and XC,z̃ is the toric variety associated to B×A C and zB×AC, denoted by XB×AC, zB×AC .

Remark 3.1.4. Sullivant [Sul07] introduces the TFP as an operation on toric ideals which
are multigraded by A; such condition, as explained in [EKS14], is equivalent to the exis-
tence of linear maps π1 : Zd1 → Zr and π2 : Zd2 → Zr with π1(bi

j) = ai for all i and j, and
π2(ci

k) = ai for all i and k. Therefore, our Definition 3.1.3 agrees with the original one.

We use deg to denote the projections π1, π2. The following example illustrates the toric
fibre product of two point configurations.

Example 3.1.5. Consider the two point configurations

B = {(0, 0), (1, 0), (0, 1), (1, 1)}, C = {(0, 0), (1, 0), (2, 0), (1, 1), (0, 1)}.

Recall that a 1 in the first coordinate of each point is omitted. To check the linearity of
the degree map it is important to take the leading 1 into account. Let A = {e1, e2} ⊂ Z2

consist of two basis vectors. We define the multigrading via the two linear maps

π1 = π2 : Z3 → Z2, (1, 0, 0) 7→ a1 = e1, (1, 1, 0) 7→ a1 = e1, (1, 0, 1) 7→ a2 = e2.

The corresponding toric fibre product B×A C is displayed in Figure 3.1. ♢

3.1.2. Fibre products in the category of toric varieties
The naming of the construction described above as toric fibre product is derived from the
idea that a (dim(A)− 1) dimensional torus is quotiented out from the product of the two
varieties, see the representation of a toric fibre product as a GIT quotient in [EKS14, Prop.
2.2]. However, it is natural to wonder whether the construction is also a fibre product in
the categorical sense. It turns out that this is not necessarily the case.
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Figure 3.1: Toric fibre product of the point configurations B and C in Example 3.1.5. Each
point configuration is displayed as a matrix with its corresponding convex hull below. The
yellow vertices in each polytope have degree e1 while the red vertices in each polytope have
degree e2 in the associated multigrading A. The degree map is deg(bi

j) = deg(ci
k) = ai.

Let NoToVar denote the category of (abstract) normal toric varieties. Its objects are
represented by tuples (Σ, N), where Σ is a fan in the ambient lattice N. The reader is
referred to [CLS11, Ch. 3] for details. A toric morphism ϕ between (Σ1, N1) and (Σ2, N2)
is a Z-linear map ϕ : N1 → N2 with the property that for every cone σ1 ∈ Σ1 there exists a
cone σ2 ∈ Σ2 such that ϕR(σ1) ⊆ σ2, where ϕR is the induced linear map on N1 ⊗R.

The category NoToVar possesses fibre products via the following combinatorial con-
struction from [Mol21, §2.2]. Consider three toric varieties with toric morphisms (omitting
the R from the notation of the maps) in the diagram

(Σ2, N2)

(Σ1, N1) (Σ3, N3)

ϕ2

ϕ1

Then their fibre product is the toric variety with fan

Σ1 ×Σ3 Σ2 = {σ1 ×σ3 σ2 : σi ∈ Σi, ϕ1(σ1) ⊆ σ3, ϕ2(σ2) ⊆ σ3}

inside the ambient lattice N1 ×N3 N2. Here, σ1 ×σ3 σ2 is the set-theoretic fibre product, i.e.

σ1 ×σ3 σ2 = {(s1, s2) ∈ σ1 × σ2 : ϕ1(s1) = ϕ2(s2)} ,

and similarly for the fibre product of lattices. It should be noted that this fibre product in
NoToVar does not necessarily agree with the scheme-theoretic fibre product of the same
varieties, see e.g. [Mol21, Ex. 2.2.2 & Ex. 2.2.3].

The toric varieties we have seen earlier (and everywhere else in this thesis) are projec-
tively embedded normal toric varieties represented by their associated polytopes. How-
ever, we can forget about the concrete embedding and consider them as abstract normal
toric varieties by taking the normal fans to their polytopes. The question is whether the
toric fibre product is then also a fibre product in NoToVar of the corresponding abstract
varieties. This is not necessarily the case as is shown by the following statement.

Theorem 3.1.6. Let B and C be point configurations representing normal toric varieties XB and
XC and abstract normal toric varieties (Σ1, N1) and (Σ2, N2). Let A be a multigrading of B and
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−→ ?

?

Figure 3.2: Left: a toric morphism P2 → P1 needs to be constant. Right: there is no
nontrivial multigrading of the Veronese surface.

C. Then the abstract toric variety underlying the toric fibre product XB×AC is not necessarily a
fibre product of (Σ1, N1) and (Σ2, N2) in NoToVar.

Proof. Let B = C = {(0, 0), (1, 0), (0, 1)} be two point configurations representing the pro-
jective plane P2. We equip both with the same multigrading

deg((0, 0)) = a1, deg((1, 0)) = deg((0, 1)) = a2,

where A =
{

a1, a2} is linearly independent (recall that we omit ones in the first coordinate
of the points). The toric fibre product XB×AC is of dimension three and represented by a
pyramid, the tip corresponding to the product of the origins. Let Σ be the normal fan of
conv(B) and let ΣB×AC be the normal fan of XB×AC. We show the impossibility of

(ΣB×AC, Z4) (Σ, Z2)

(Σ, Z2) (Ξ, N)

ϕ2

ϕ1

being a Cartesian diagram, for any toric variety (Ξ, N) and toric morphisms ϕ1 and ϕ2.
If Ξ were zero- or one-dimensional, the only toric map from Σ to Ξ would be constant

(the reader can easily convince themselves of this by looking at the left part of Figure 3.2)
and Σ×Ξ Σ would be four-dimensional. Hence, assume that Ξ is at least two-dimensional
and ϕ1 is injective, mapping Σ into a two-dimensional slice S1 of Ξ. First assume that ϕ2 is
constant. Then Σ×Ξ Σ ∼= Σ is two-dimensional, again a contradiction. Therefore, we may
assume that ϕ2 is injective as well, mapping Σ into a two-dimensional slice S2 of Ξ.

First consider the case that S1 and S2 intersect in a one-dimensional space L. This L
intersects both ϕ1(Σ) and ϕ2(Σ) in two of their cones. Therefore, Σ ×Ξ Σ has two cones
and not the five cones of ΣB×AC. Finally, if S1 = S2, the fibre product Σ×Ξ Σ would be
two-dimensional. In no case we can recover ΣB×AC.

The example above bears another curiosity. If the toric fibre product were compatible
with the category-theoretic fibre product, after passing to the abstract underlying variety it
should be agnostic to the specific embedding chosen before. However, consider a dilated
two-dimensional simplex ∆, still representing P2, but in a Veronese embedding. Corol-
lary 3.1.18 below asserts that the points in ∆ which are assigned the same multidegree
form a face of ∆. Therefore, we see that ∆ can only be trivially multigraded with all points
being graded by the same multidegree (see Figure 3.2 (right)). Then the toric fibre product
X∆ ×A X∆ is isomorphic to P2 ×P2 which is not the variety XB×AC from the proof above.
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3.1.3. The Horn matrix of ML degree one toric fibre products
In this subsection we give an explicit description of a Horn pair for the toric fibre product
of two toric varieties with ML degree one. This construction uses a Horn pair for each
factor and for the (A− 1)-dimensional probability simplex. Throughout this section we
use notation and setup for the toric fibre product introduced in Subsection 3.1.1. Recall
the definitions of a Horn matrix (Definition 2.2.14) and a Horn pair (Definition 2.2.15).

If XB and XC have ML degree one, by Theorem 2.2.16, there exist Horn pairs (HB, λB)
and (HC, λC) such that the maximum likelihood estimates p̂B and p̂C can be expressed in
terms of Horn parametrisations, i.e.

p̂B = λB ⋆ (HBuB)
HB and p̂C = λC ⋆ (HCuC)

HC

for data vectors uB and uC. It follows from [AKK20, Thm. 5.5] that the toric fibre product
of the two models XB×AC has again ML degree one and must therefore admit a Horn pair
(HB×AC, λB×AC). We give an explicit description of (HB×AC, λB×AC) in Theorem 3.1.8.

To set up the notation, let

u =
(

ui
j,k

)i∈|A|

(j,k)∈|Bi×Ci |

denote a data vector. As before, we reserve i, j and k for indices ofA, Bi and Ci, respectively.
We use “+” to denote summation over all possible values of the respective index, e.g.
ui

j,+ = ∑k∈|Ci | ui
j,k = (uB)

i
j. In a similar vein, we denote by

p =
(

pi
j,k

)i∈|A|

(j,k)∈|Bi×Ci |

a joint probability distribution for the model XB×AC.
In general, if a statistical model possesses a Horn pair, i.e. the Horn parametrisation

yields a parametrisation of the model, the Horn pair is not unique. However, there exists
a minimal Horn matrix to a model with ML degree one, see [DMS21].

Example 3.1.7. A Horn pair corresponding to the simplex ∆n is given by letting the Horn
matrix be the (n + 1)-dimensional identity matrix with an additional row of (−1)s at the
bottom and with λ being the vector of all (−1)s. For example, for the simplex ∆1 we have

H =

 1 0
0 1
−1 −1

 , λ = (−1,−1), Φ(u1, u2) = λ ⋆ (Hu)H =

(
u1

u1 + u2
,

u2

u1 + u2

)
.

For another illustration, consider the two models XB and XC defined by the polytopes
P = conv(B) and Q = conv(C) from Example 3.1.13. We remark that XB represents the in-
dependence model of two binary random variables (see Example 2.2.3), and XC represents
a multinomial staged tree (see [DMS21, §3]). For toric surfaces with ML degree one, the
Horn pair can be directly read off from the lattice distance functions (see Example 3.1.13)
and the normal fan of the polytope, see [DDPS23, Prop. 3.1]. Concretely, we have

HB =



b1
1 b1

2 b2
1 b2

2
1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
−1 −1 −1 −1
−1 −1 −1 −1

, HC =



c1
1 c1

2 c1
3 c2

1 c2
2

0 1 2 1 0
0 0 0 1 1
2 1 0 0 1
1 1 1 0 0
−1 −1 −1 −1 −1
−2 −2 −2 −1 −1


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and λB = (1, 1, 1, 1), λC = (−1,−2,−1, 1, 1); the columns of the Horn matrices are labelled
by the vectors of B and C, respectively. ♢

Theorem 3.1.8. Let XB and XC be toric varieties with ML degree one and corresponding Horn
pairs (HB, λB) and (HC, λC), respectively, where HB ∈ Zr1×|B|, HC ∈ Zr2×|C|. Fix HA to be
the minimal Horn matrix associated to the (|A| − 1)-dimensional probability simplex, so HA ∈
Z(|A|+1)×|A|. Denote the columns of HB, HC, and HA by hi

j, hi
k, and hi, respectively. Then

(HB×AC, λB×AC) is a Horn pair for the toric fibre product XB×AC. Here, the vector λB×AC of
coefficients is given by

λB×AC =
(

λi
j,k

)i∈|A|

(j,k)∈|Bi×Ci |
with λi

j,k = −λi
jλ

i
k and λB = (λi

j)
i∈|A|
j∈|Bi |, λC = (λi

k)
i∈|A|
k∈|Ci |,

and the Horn matrix HB×AC is given in block form by

HB×AC =
(

HB1×C1 | HB2×C2 | · · · | HB|A|×C|A|
)

. (3.1.1)

For each i ∈ |A|, the column hi
j,k of block HBi×Ci is the vertical concatenation of hi

j, hi
k and − hi.

Explicitly, if ρ = r1 + r2 + |A|+ 1 and α ∈ [ρ], then the row α of hi
j,k, denoted by hα,i

j,k , is given by

hα,i
j,k =


hα,i

j for 1 ≤ α ≤ r1

h(α−r1),i
k for r1 + 1 ≤ α ≤ r1 + r2

−h(α−r1−r2),i for r1 + r2 + 1 ≤ α ≤ ρ.

Where, hα,i
j , h(α−r1),i

k , and h(α−r1−r2),i, are the entries α, α− r1, and α− r1− r2 of the columns hi
j, hi

k

and hi, respectively.

Proof. It suffices to check that the pair (HB×AC, λB×AC) gives rise to a Horn parametrisation
yielding the correct expression for the maximum likelihood estimate of XB×AC; then the
pair will automatically be friendly and positive, thus a Horn pair for XB×AC, see [DMS21].

By [AKK20, Thm. 5.5], the MLE of XB×AC is given by

p̂ =
(

p̂i
j,k

)i∈|A|

(j,k)∈|Bi×Ci |
with p̂i

j,k =
p̂i

j p̂
i
k

p̂i
+,+

.

The (i, j, k)th entry of the Horn parametrisation computes as

(
λB×AC ⋆ (HB×ACu)HB×AC

)i

j,k
= λi

j,k

ρ

∏
α=1

 ∑
(ĩ, j̃,k̃)∈|B×AC|

hα,ĩ
j̃,k̃

uĩ
j̃,k̃

hα,i
j,k

(3.1.2)

Let us split the product above into three products P1, P2 and P3 where α ranges over
{1, . . . , r1}, {r1 + 1, . . . , r1 + r2} and {r1 + r2 + 1, . . . , ρ}, respectively. Then we obtain

P1 =
r1

∏
α=1

 ∑
(ĩ, j̃,k̃)∈|B×AC|

hα,ĩ
j̃,k̃

uĩ
j̃,k̃

hα,i
B×ACj,k

=
r1

∏
α=1

 ∑
(ĩ, j̃,k̃)∈|B×AC|

hα,ĩ
j̃

uĩ
j̃,k̃

hα,i
j

=
r1

∏
α=1

 ∑
(ĩ, j̃)∈|B|

hα,ĩ
j̃

uĩ
j̃,+

hα,i
Bj

=
p̂i

j,+

λi
j

,
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and similarly P2 =
p̂i
+,k
λi

k
. Finally, we have

P3 =
ρ

∏
α=r1+r2+1

 ∑
(ĩ, j̃,k̃)∈|B×AC|

hα,ĩ
j̃,k̃

uĩ
j̃,k̃

hα,i
j,k

=
ρ

∏
α=r1+r2+1

 ∑
ĩ∈|A|
−h(α−r1−r2),ĩuĩ

+,+

(−hα,i)

=

(
|A|

∏
α=1

(
−uα

+,+
)δα,i

)−1

· u+
+,+ = −

u+
+,+

ui
+,+

.

As A is linearly independent, p̂i
+,+ =

ui
+,+

u+
+,+

. Combining this with the above, we obtain

(3.1.2) = −λi
jλ

i
kP1P2P3 =

p̂i
j,+ p̂i

+,k

p̂i
+,+

.

Example 3.1.9. The Horn pair for the toric fibre product XB ×A XC from Theorem 3.1.8,
where XB, XC and the multigrading are taken from Example 3.1.5 and the Horn matrices
are computed in Example 3.1.7, is given by

HB×AC =



b1
1

c1
1

b1
1

c1
2

b1
1

c1
3

b1
2

c1
1

b1
2

c1
2

b1
2

c1
3

b2
1

c2
1

b2
1

c2
2

b2
2

c2
1

b2
2

c2
2

1 1 1 0 0 0 1 1 0 0
0 0 0 1 1 1 0 0 1 1
1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1
0 1 2 0 1 2 1 0 1 0
0 0 0 0 0 0 1 1 1 1
2 1 0 2 1 0 0 1 0 1
1 1 1 1 1 1 0 0 0 0
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−2 −2 −2 −2 −2 −2 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 −1 −1 −1 −1
1 1 1 1 1 1 1 1 1 1


and λB×AC = (1, 2, 1, 1, 2, 1,−1,−1,−1,−1). In almost all instances the Horn matrix as
constructed in Theorem 3.1.8 is not minimal, as is also the case in this example. However,
it can be transformed into a minimal one via an efficient algorithm [DMS21, Lem. 3]. ♢

3.1.4. Blending functions
We now turn our attention to geometric modelling. The central object are blending func-
tions, giving rise to convenient parametrisations of shapes to be modelled. In this subsec-
tion we introduce the notion of blending functions, and in Subsection 3.1.5 we give explicit
descriptions of blending functions of toric fibre product patches, thereby creating a large
class of new blending functions satisfying the desirable property of rational linear precision.

Let P ⊂ Rd be a lattice polytope with facet representation P = {p ∈ Rd : ⟨p, ni⟩ ≥
ai, ∀i ∈ [R]}, where ni is a primitive inward facing normal vector to the facet Fi. Without
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loss of generality, we will always assume that P is full-dimensional inside Rd. The lattice
distance of a point p ∈ Rd to Fi is hi(p) := ⟨p, ni⟩+ ai, i ∈ [R]. Set B := P ∩Zd, so B is the
set of lattice points in P and let z = (zb)b∈B be a vector of positive weights. To each b ∈ B
we associate the rational functions βb, βz, βz,b : P→ R defined by

βb(p) :=
R

∏
i=1

hi(p)hi(b), βz(p) := ∑
b∈B

zbβb(p), and βz,b := zbβb/βz. (3.1.3)

The functions βz,b for b ∈ B are the toric blending functions of the pair (P, z), introduced by
Krasauskas [Kra02] as generalisations of Bézier curves and surfaces to more general poly-
topes. Blending functions usually satisfy additional properties that make them amenable
for computation, see for instance [Kra02]. Given a set of control points {Qb}b∈B, a toric
patch is defined by the rule F(p) := ∑b∈B βb(p)Qb.

Definition 3.1.10. The pair (P, z) has rational linear precision if there is a set of rational
functions {β̂b}b∈B on Cd satisfying:

1. ∑b∈B β̂b = 1.
2. The functions {β̂b}b∈B define a rational parametrisation of the toric variety XB,z,

β̂ : Cd 99K XB,z ⊂ P|B|−1, β̂(t) = (β̂b(t))b∈B.

3. For every p ∈ Relint(P) ⊂ Cd, β̂b(p) is defined and is a nonnegative real number.
4. Linear precision: ∑b∈B β̂b(p)b = p for all p ∈ P.

The property of rational linear precision does not hold for arbitrary toric patches, but
it is desirable because the blending functions “provide barycentric coordinates for general
control point schemes” [GPS10]. A deep relation to algebraic statistics is provided by the
following statement.

Theorem 3.1.11 ([GPS10]). Let B = P ∩Zd be the set of lattice points of P. The pair (P, z) has
rational linear precision if and only if XB,z has ML degree one.

Remark 3.1.12. Henceforth, to ease notation, we drop the usage of a vector of weights z
for the blending functions βz,b and the scaled projective toric variety XB,z. Although we
will not in general write them explicitly in the proofs, the weights play an important role
whether the toric variety has ML degree one or, equivalently, if the polytope has rational
linear precision. How the ML degree depends on the weights is studied in Section 3.2.

Example 3.1.13. Consider the point configurations as in Example 3.1.5 (see also Figure 3.1)

B = {(0, 0), (1, 0), (0, 1), (1, 1)}, C = {(0, 0), (1, 0), (2, 0), (1, 1), (0, 1)}

and set P = conv(B) and Q = conv(C). The facet presentation of P is

P = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0, 1− x1 ≥ 0, 1− x2 ≥ 0}.

The lattice distance functions of a point (x1, x2) ∈ R2 to the facets of P are

h1 = x1, h2 = x2, h3 = 1− x1, h4 = 1− x2.

Therefore, the toric blending functions of P with weights z = (1, 1, 1, 1) are:

β(0
0

) = (1−x1)(1−x2), β(1
0

) = x2(1−x1), β(0
1

) = x1(1−x2), β(1
1

) = x1x2. (3.1.4)
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These toric blending functions satisfy the conditions in Definition 3.1.10; when this is the
case, P is said to have strict linear precision. The polytope Q has rational linear precision
for the vector of weights z̃ = (1, 2, 1, 1, 1). In this case, the toric blending functions do
not satisfy condition 4 in Definition 3.1.10, however, as explained in [CC20], the following
functions do:

β̃(0
0

) = (1−y2)(2−y1−y2)2

(2−y2)2 , β̃(1
0

) = 2y1(1−y2)(2−y1−y2)

(2−y2)2 , β̃(2
0

) = y2
1(1−y2)

(2−y2)2 ,

β̃(0
1

) = y2(2−y1−y2)

2−y2
, β̃(1

1

) = y1y2

2−y2
.

♢

3.1.5. Blending functions of toric fibre products
In this subsection we show that the blending functions of the toric fibre product of two
polytopes with rational linear precision can be constructed from the blending functions of
the original polytopes and give an explicit formula for them. Throughout this section we
use the setup for the toric fibre product introduced in Subsection 3.1.1. We let P = conv(B)
and Q = conv(C) be polytopes with rational linear precision and denote their blending
functions satisfying Definition 3.1.10 by {βi

j}
i∈|A|
j∈|Bi |

and {βi
k}

i∈|A|
k∈|Ci |

, respectively.

Theorem 3.1.14. If P and Q are polytopes with rational linear precision for weights z, z̃, respec-
tively, then the toric fibre product P ×A Q has rational linear precision with vector of weights
zB×AC. Moreover, blending functions with rational linear precision for P×A Q are given by

βi
j,k(p, q) =

βi
j(p)βi

k(q)

∑j′∈|Bi | β
i
j′(p)

=
βi

j(p)βi
k(q)

∑k′∈|Ci | β
i
k′(q)

(3.1.5)

where (p, q) ∈ P×A Q.

Remark 3.1.15. The two expressions on the right-hand side of (3.1.5) are well-defined on
Relint(P ×A Q). The morphism βi

j,k extends to a rational function βi
j,k : Cd 99K C where

d = dim(P×A Q). By abuse of notation, we will sometimes write

βi
j,k(t) =

1
Ni(t)

βi
j(t)βi

k(t),

where t ∈ Cd and Ni(t) denotes the denominator as in (3.1.5). The most difficult part in
the proof of Theorem 3.1.14 is to show that the two expressions on the right-hand side of
(3.1.5) agree on Relint(P×A Q), which might seem surprising at first.

The following example illustrates the construction in Theorem 3.1.14.

Example 3.1.16. Consider the polytopes P and Q from Example 3.1.13, with their vectors
of weights z and z̃. By Theorem 3.1.14, the blending functions for P×A Q are

βi
j β̃

i
k

∑j βi
j
=

βi
j β̃

i
k

∑k β̃i
k
.

For example, the blending function corresponding to (b1
2 c1

3)
T is

β1
2,3 =

β1
2 β̃1

3

β1
1 + β2

1
=

x1(1−x2)y2
1(1−y2)

(1−x2)(2− y2)2 =
β1

2 β̃1
3

β̃1
1 + β̃1

2 + β̃1
3
=

x1(1−x2)y2
1(1−y2)

(1−y2)(2− y2)2 .

While the denominators are different, the two expressions agree on Relint(P×A Q). ♢
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Before proving Theorem 3.1.14 we will prove two lemmas which will be used in the
final proof. Our first lemma demonstrates how the blending functions behave on certain
faces of P and Q. The second lemma shows that the two parametrisations in (3.1.5) yield
the same MLE for a generic data point u.

Lemma 3.1.17. Let Pi be the subpolytope defined by Pi = conv{bi
j : j ∈ |Bi|}. Then, for p ∈ Pi,

∑
j∈|Bi |

βi
j(p) = 1.

Proof. By assumption, β : Cd1 99K XB, β(t) =
(

βi
j(t)
)i∈|A|

j∈|Bi |
is a rational parametrisation

of XB. Let Xi
B be the toric variety associated to Pi; we claim that Xi

B is parametrised by(
βi

j(t)
)

j∈|Bi |
and setting all other coordinates of β to zero. Indeed, consider the linear map

deg : P→ conv(A), bi
j 7→ ai.

As A is linearly independent, ai is a vertex of conv(A). Note that Pi = deg−1(ai); as
preimages of faces under linear maps are again faces, Pi is a face of P. The claim then
follows from the Orbit-face-correspondence (Theorem 2.1.6): we know that ∑(i,j)∈|B| β

i
j = 1.

On Pi, all βi′
j for i′ ̸= i vanish, so we must have ∑j∈|Bi | β

i
j(p) = 1 for p ∈ Pi.

We record the following fact as a consequence of the proof above.

Corollary 3.1.18. Let P be a polytope equipped with a linearly independent multigrading A. Then
Pi = conv(bi

j | j ∈ |Bi|) is a face of P.

Example 3.1.19. For the polytope Q and the grading deg as shown in Figure 3.1, we have
Q1 = conv(c1

1, c1
2, c1

3) and Q2 = conv(c2
1, c2

2). To illustrate the result of Lemma 3.1.17, note
that the sum of the blending functions associated to Q1 is equal to 1− y2. ♢

Lemma 3.1.20. Let P and Q be polytopes with rational linear precision and β1, β2 be two rational
functions defined by

β1(t) =

(
βi

j(t)βi
k(t)

∑j′∈|Bi | β
i
j′(t)

)i∈|A|

(j,k)∈|Bi×Ci |

and β2(t) =

(
βi

j(t)βi
k(t)

∑k′∈|Ci | β
i
k′(t)

)i∈|A|

(j,k)∈|Bi×Ci |
.

For a data point u =
(

ui
j,k

)i∈|A|

(j,k)∈|Bi×Ci |
, set

p = ∑
(i,j,k)∈|B×AC|

ui
j,k

u+
+,+

mi
j,k ∈ Cd.

Then the maximum likelihood estimate for XB×AC is

β1(p) = β2(p) =
(

p̂i
j,k

)i∈|A|

(j,k)∈|Bi×Ci |
.
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Proof. As P and Q have rational linear precision, by [CC20, Prop. 8.4] we have βi
j(p) =

( p̂B)
i
j and βi

k(p) = ( p̂C)
i
k. Furthermore, by [AKK20, Thm. 5.5], the MLE of the toric fibre

product is given by

p̂i
j,k =

( p̂B)
i
j ( p̂C)

i
k

( p̂A)
i .

As a consequence of Birch’s Theorem (Theorem 2.2.11), it follows from the proof of [AKK20,

Lem. 5.10] that ( p̂B)
i
+ =

ui
+,+

u+
+,+

= ( p̂A)
i, and analogously ( p̂C)

i
+ = ( p̂A)

i. Therefore,

∑
j′∈|Bi |

βi
j′(p) = ( p̂B)

i
+ = ∑

k′∈|Ci |
βi

k′(p) = ( p̂C)
i
+ = ( p̂A)

i

and the desired statement follows.

We are now ready to prove Theorem 3.1.14.

Proof. Having rational linear precision is equivalent to having ML degree one by Theorem
3.1.11. Then the first statement is a direct consequence of the multiplicativity of the ML
degree under toric fibre products [AKK20, Thm. 5.5].

We first show that both expressions in (3.1.5) define rational parametrisations

β1(t) =

(
βi

j(t)βi
k(t)

∑j′∈|Bi | β
i
j′(t)

)i∈|A|

(j,k)∈|Bi×Ci |

, β2(t) =

(
βi

j(t)βi
k(t)

∑k′∈|Ci | β
i
k′(t)

)i∈|A|

(j,k)∈|Bi×Ci |

of XB×AC. To do this, we first show that the products βi
jβ

i
k parametrise XB×AC and the

result then follows since β1 and β2 are equivalent to βi
jβ

i
k under the torus action associated

to the multigrading A. Let ϕ : C|B| ×C|C| → C|B×AC| be the map given by

ϕ(x, y) = (xi
jy

i
k)

i∈|A|
(j,k)∈|Bi×Ci | .

Then the toric fibre product XB×AC is precisely given by ϕ(XB × XC). Since the blending
functions βi

j and βi
k parametrise XB and XC, respectively, and βi

jβ
i
k = ϕ ◦ (βi

j, βi
k), we

immediately get that the βi
jβ

i
k parametrise XB×AC. Now observe that the multigrading A

induces an action of the torus TA = (C∗)|A| via

TA × XB×AC → XB×AC, (t1, . . . , t|A|).
(

xi
j,k

)i∈|A|

(j,k)∈|Bi×Ci |
=
(

tixi
j,k

)i∈|A|

(j,k)∈|Bi×Ci |
.

Define τ : Cd1 → TA by

τ = (τ1, . . . , τ|A|), τi(t) =

{ (
∑j∈|Bi | β

i
j(t)
)−1

if ∑j∈|Bi | β
i
j(t) ̸= 0

1 else.

Note that τ(t) ∈ TA and

τ(x).(βi
j(x)βi

k(x))
i∈|A|
j∈|Bi |,k∈|Ci | = β1(x) for all x ∈ P×A Q,

showing that βi
j(x)βi

k(x) and β1(x) lie in the same TA-orbit. A similar argument shows the
same for β2(x), thus both β1 and β2 parametrise XB×AC.
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We will now show that the two expressions in 3.1.5 are equal. Let us define a new
τ : Cd1+d2 → TA by

τ = (τ1, . . . , τ|A|), τi(t) =


∑j∈|Bi | β

i
j(t)

∑k∈|Ci | β
i
k(t)

if ∑j∈|Bi | β
i
j(t) ̸= 0 ̸= ∑k∈|Ci | β

i
k(t)

1 else.

Clearly, τ(t) ∈ TA; we claim that τ(x).β1(x) = β2(x) for x ∈ P×AQ. First consider the case
x ∈ Pi ×Qi, with Pi and Qi defined as in Lemma 3.1.17. By the Orbit-face-correspondence
(Theorem 2.1.6) applied to the TA-action, all coordinates in β1(x) and β2(x) vanish except
for those graded by ai. By Lemma 3.1.17, ∑j∈|Bi | β

i
j(x) = ∑k∈|Ci | β

i
k(x) = 1, so in particular

the claim holds. Now consider the case where x /∈ ⋃
i∈|A| Pi × Qi. Then, again by the

Orbit-face-correspondence applied to the TA-action, for each i ∈ |A| there exist j ∈ |Bi|
and k ∈ |Ci| such that βi

j(x), βi
k(x) ̸= 0. Thus, by definition, τ(x).β1(x) = β2(x). We

conclude that for all x ∈ P ×A Q, β1(x) and β2(x) lie in the same TA-orbit. Equality of
β1 and β2 then follows once there exists at least one point in each orbit where the two
parametrisations agree. This is indeed the case: for the maximal orbit this is the point
given in Lemma 3.1.20, for smaller orbits corresponding to faces of Pi × Qi we can pick a
point as in Lemma 3.1.17.

It now remains to show that the βi
j,k sum to one and that they satisfy linear precision.

This follows from direct computation. Firstly, we have

∑
(i,j,k)∈|B×AC|

βi
j,k = ∑

i∈|A|,k∈|Ci |
βi

k ∑
j∈|Bi |

βi
j

∑j′∈|Bi | β
i
j′
= ∑

i∈|A|,k∈|Ci |
βi

k = 1.

Finally, we compute

∑
(i,j,k)∈|B×AC|

βi
j,k(p)m

i
j,k = ∑

i∈|A|,j∈|Bi |
βi

j(p) ∑
k∈|Ci |

βi
k(p)

∑k′∈|Ci | β
i
k′(p)

(bi
j, 0)

+ ∑
i∈|A|,k∈|Ci |

βi
k(p) ∑

j∈|Bi |

βi
j(p)

∑j′∈|Bi | β
i
j′(p)

(0, ci
k)

=

 ∑
i∈|A|,j∈|Bi |

βi
j(p)b

i
j , ∑

i∈|A|,k∈|Ci |
βi

k(p)c
i
k

 = p.

Therefore, the βi
j,k constitute blending functions with rational linear precision.
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3.2. Euler stratifications of hypersurface families
In this section we take a more holistic view on Problem 3.0.1. Instead of focussing on the
case of ML degree one, we develop algorithms to give a complete computational answer to
Problem 3.0.1. To this end, we introduce Euler stratifications. We study them in the general
setup of hypersurface families. Euler stratifications stratify a parameter locus into strata
over which each fibre has constant Euler characteristic. In particular, for a certain choice of
hypersurface family, an Euler stratification divides a parameter space Z into Euler strata
Si such that for all z ∈ Si, the ML degree of XA,z is constant. The relationship between the
ML degree and the Euler characteristic is established by Theorem 2.2.12.

A homogeneous polynomial 0 ̸= F ∈ C[x0, . . . , xd] of degree n defines a hypersurface
V(F) ⊂ Pd. We study the dependence of the (topological) Euler characteristic of V(F)
on the coefficients of F. More precisely, we consider a family V(F(x, z)) ⊂ Pd × Z of
hypersurfaces over an irreducible variety Z. We seek to compute an explicit description of
the loci in Z on which the hypersurface V(F(x, z)) has a fixed Euler characteristic. An Euler
stratification decomposes Z into such loci, see Subsection 3.2.1 for a precise definition.

We must clarify what we mean by an “explicit description” of these loci, or of the
strata in an Euler stratification. It turns out that Euler strata are constructible, meaning
essentially that they can be described by polynomials. We illustrate this for plane conics.

Example 3.2.1 (d = n = 2). Let Z = P5 and consider a generic ternary quadric

F(x0, x1, x2, z) = z0x2
0 + z1x0x1 + z2x0x2 + z3x2

1 + z4x1x2 + z5x2
2 . (3.2.1)

The Euler characteristic of the curve V(F(x, z)) is either two or three. Indeed, if V(F(x, z))
is smooth and F is irreducible then the Euler characteristic is χ(V(F(x, z))) = 2. The same
is true when F = L2 is the square of a linear form L. If V(F(x, z)) is singular, then it is the
union of two distinct lines, and it has Euler characteristic three. Algebraically, we have

χ(V(F(x, z))) = 3 ⇐⇒ rank M(z) = 2, where M(z) =

2z0 z1 z2
z1 2z3 z4
z2 z4 2z5

 . (3.2.2)

This defines a constructible subset of P5, the regular locus of the hypersurface

∇ = {z ∈ Z : ∆ = 0}, where ∆ = 8 z0z3z5 − 2 z0z2
4 − 2 z2

1z5 + 2 z1z2z4 − 2 z2
2z3. (3.2.3)

The singular locus ∇sing is cut out by the 2× 2-minors of the matrix M(z) in (3.2.2). ♢

Euler strata in the parameter space Z are closely related to the equisingular loci of
our hypersurface families, i.e. the sets of parameter values for which the singularities
of V(F(x, z)) are of the same type, in some appropriate sense. These loci are not well
understood in general. For points in P1 (d = 1), the problem comes down to computing
coincident root loci [Chi03]. Computations up to degree n = 7 are reported in [LS16]. For
plane curves, the most well studied equisingular loci are Severi varieties. These are loci of
nodal curves of fixed degree with a fixed number of nodes [Ful82]. For tropical approaches
to Severi varieties, see for instance [DHT17, Yan13]. Severi varieties for surfaces in P3

were studied in [CC99]. In 1988, Diaz and Harris wrote that the equisingular stratification
of plane curves of a fixed degree was out of reach [DH88, p. 1]. This section addresses the
problem using modern tools from computational algebraic geometry. We elaborate more
on equisingular loci in a paragraph at the end of Section 3.2.1.
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A special case which deserves extra attention is when F factors as

F(x, z) = x0 · · · xd f (x, z). (3.2.4)

Let T ⊂ Pd be the dense torus of Pd, i.e. T ∼= (C∗)d ⊂ Pd. In this case, we have

χ(V(F)) = χ(Pd)− χ(T) + χ(V(F) ∩ T) = (d + 1) + χ(V( f ) ∩ T).

Hence, an Euler stratification for the projective hypersurface V(F) is an Euler stratification
for the very affine hypersurface V( f ) ∩ T. Very affine varieties are central in tropical ge-
ometry [MS21]. They appear as statistical models in algebraic statistics [CHKO24, HS14]
and as integration spaces in particle physics [MHMT23]. In these applications, the Eu-
ler characteristic of the very affine variety at hand plays a crucial role; see for example
Theorem 2.2.12 and [MHMT23, Thm. 3.14]. In statistics, the absolute value of the Euler
characteristic coincides with the maximum likelihood degree of the corresponding model,
which measures the algebraic complexity of maximum likelihood estimation [CHKS06].
In physics, |χ(V( f )) ∩ T| is the dimension of a vector space of integrals, and it measures
the complexity of integration by parts reduction [AFST24, BBKP19, MHMT23].

With regard to Equation (3.2.4), we may consider equisingular loci for the zero set of
f (x, z) in T. If, in addition, the parameters z appear as coefficients of f (as in (3.2.1)),
then this leads us to study A-discriminants and principal A-determinants as defined by
Gel’fand, Kapranov and Zelevinsky (GKZ) [GKZ08, Ch. 9–10]. We illustrate this for our
conics example from before.

Example 3.2.2. Let f (x, z) be the polynomial in (3.2.1). Its exponents are the columns of

A =

2 1 1 0 0 0
0 1 0 2 1 0
0 0 1 0 1 2

 .

The cubic defining equation ∆ of the hypersurface∇ in Example 3.2.1 is the A-discriminant
associated to this matrix. By [ABB+19, Thm. 13], the Euler characteristic of V( f (x, z)) ∩ T
equals −4, unless the principal A-determinant vanishes:

EA = ∆ · (z2
1 − 4z0z3) · (z2

2 − 4z0z5) · (z2
4 − 4z3z5) · z0 · z3 · z5 = 0. (3.2.5)

For a generic point in the 4-dimensional variety ∇χ = {z ∈ P5 : EA(z) = 0}, the Euler
characteristic is χ(V( f (x, z)) ∩ T) = −3. Overall, the possible Euler characteristics are
0,−1,−2,−3,−4. In Section 3.2.4, we will decompose ∇χ into 70 Euler strata. ♢

Esterov studies Euler characteristics and multisingularity strata in the GKZ setting in
[Est13, Est17]. In particular, in [Est13, §1.2] he coins the term “Euler discriminant”, which
was picked up in the context of Feynman integrals in [FMT24]. In this section, the Euler
discriminant variety ∇χ is the subvariety of Z obtained as the closure of all z for which
the Euler characteristic χ(V(F(x, z))) takes non-generic values. If ∇χ is defined by a single
equation ∆χ = 0, then we call ∆χ the Euler discriminant polynomial. Since computing
an Euler stratification is an iterated computation of Euler discriminants, understanding
these discriminants is crucial to our story. The formulae for χ(V(F)) stated by Dimca
and Papadima [DP03] and Huh [Huh12, Huh13] are a key to success for computing Euler
discriminants using computer algebra software.

Euler stratifications are coarsenings of Whitney stratifications [Whi65]. More precisely,
by Thom’s first isotopy lemma [Mat12, Prop. 11.1], the strata of a Whitney stratification
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parametrise varieties of constant topological type, and thus in particular of constant Euler
characteristic. Brown’s definition of the Landau variety in [Bro09, Def. 54] is based on
Thom’s isotopy lemma; it is the union of all Whitney strata of codimension one. This
variety captures the singular locus of Feynman integrals, viewed as multivalued functions
of kinematic parameters. The Landau variety contains the Euler discriminant, but the two
do not always coincide, see Examples 3.2.9 and 3.2.10. However, in physics, they often do.

Recent efforts by Helmer and Nanda have lead to symbolic algorithms for computing
Whitney stratifications [HN23]. This was applied to Feynman integrals and Landau vari-
eties in [HPT24]. That paper shows that the algorithms work well in small examples, but
they run out of steam for more challenging integrals, such as those tackled in [FMT24].
However, the efficient symbolic-numerical methods in [FMT24] often lead to incomplete
results, resulting in a variety that is strictly contained in the Euler discriminant, called the
principal Landau determinant.

The section is organised as follows. Subsection 3.2.1 gives a definition of Euler strat-
ifications (Definition 3.2.3), proves existence for a general class of hypersurface families
(Lemma 3.2.6) and presents some first examples. We discuss the relation to Whitney strati-
fications and multisingularity strata. Subsection 3.2.2 revisits coincident root loci for binary
forms. We summarise known results and deduce an explicit characterisation of the Euler
stratification (Theorems 3.2.13 and 3.2.14). We also present a new algorithm for the Euler
stratification of hyperplane sections of smooth projective curves (Algorithm 2). In Subsec-
tion 3.2.3, we develop general algorithms (Algorithms 3, 4 and 5) for computing the Euler
stratification of projective hypersurface families. For families of plane curves with isolated
singularities, we prove that the Euler discriminant equals the polar discriminant (Propo-
sition 3.2.24). Subsection 3.2.4 is dedicated to the very affine setting. We prove that the
degree of the Gauss map counts the critical points of a logarithmic potential (Proposition
3.2.28). This is then related to Huh’s result (Theorem 3.2.27) using likelihood degenerations
[ABF+23]. We prove two structural results in Theorem 3.2.31 and Proposition 3.2.32, and
present the specialised Algorithm 6 for computing Euler discriminants in this setting. Fol-
lowing Subsection 3.2.5, we present a gallery of examples, including coincident root loci of
binary octics (Subsection 3.2.6), matroid stratifications of bilinear forms (Subsection 3.2.7),
Landau varieties of Feynman integrals (Subsection 3.2.8), maximum likelihood stratifica-
tions for toric Fano varieties (Subsection 3.2.9) and Hirzebruch surfaces (Subsection 3.2.10).
Our code and computational results are available online at MathRepo [TW24b].

3.2.1. Definitions and first examples
Our first task is to define Euler stratifications, and to show that they exist for sufficiently
general families of varieties. A quasi-projective variety is a subset X ⊂ Pd of projective space
which can be written as X = V \W, where V, W ⊂ Pd are closed subvarieties.

Definition 3.2.3. Let X , Z be quasi-projective varieties, with Z irreducible. Consider a sur-
jective morphism π : X → Z whose fibres have constant dimension. An Euler stratification
of π is a finite set S of quasi-projective subvarieties of Z such that

1. when S ̸= S′ ∈ S , then S ∩ S′ = ∅, and
⊔

S∈S S = Z,

2. for each stratum S ∈ S , the closure S is a union of strata: S =
⊔

S′⊆S S′,

3. the Euler characteristic of the fibre χ(π−1(z)) is constant for z ∈ S.

The set S is partially ordered as follows: S ⪯ S′ if and only if S ⊆ S′.
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The quasi-projective subvarieties S in an Euler stratification S are called (Euler) strata,
and their closures S are the closed (Euler) strata. Euler strata need not be irreducible.

We make the following concrete choices for X and Z. Let F ∈ C[z][x] be a bi-
homogeneous polynomial in the variables x = (x0, . . . , xd) and parameters z = (z0, . . . , zm).
Let Z ⊆ Pm be any irreducible quasi-projective subvariety. We define

XF = {(x, z) ∈ Pd × Z : F(x, z) ̸= 0}. (3.2.6)

We want to stratify the family of hypersurface complements given by the projection

πF : XF → Z, (x, z) 7−→ z. (3.2.7)

We denote the fibres of this map by XF,z = π−1
F (z). We assume that the set {z ∈ Z :

F(x, z) ≡ 0} is empty, so that all fibres are d-dimensional.

Remark 3.2.4. Alternatively, we may consider the family of hypersurfaces

X c
F = {(x, z) ∈ Pd × Z : F(x, z) = 0}

with closed fibres X c
F,z = Pd \ XF,z. The equality χ(XF,z) = χ(Pd) − χ(X c

F,z) = d + 1−
χ(X c

F,z) implies that an Euler stratification of πF is one of πc
F : X c

F → Z and vice versa.

Example 3.2.5 (Conics in P2). Consider the family of conics XF = {(x, z) ∈ P2 × P5 :
F(x; z) ̸= 0}, where F is as in (3.2.1), with its coordinate projection π : XF → P5. By the
discussion in Example 3.2.1, the poset S consists of three strata, of dimensions five, four,
and two. The closed four-dimensional stratum is given by the discriminant ∆ = 0, with
∆ as in (3.2.3). The smallest stratum is, up to scaling coordinates, the second Veronese
embedding of P2, whose binomial ideal is given by the 2× 2-minors of M(z) from (3.2.2).
Notice that there is no stratum of dimension three, and the Euler characteristic drops by
one on the discriminant. ♢

Example 3.2.5 illustrates that the loci Zk = {z ∈ Z : χ(XF,z) = k} of constant Eu-
ler characteristic are not necessarily quasi-projective, even when XF and Z are quasi-
projective. We will show that they are always constructible. A constructible set is a finite
union of quasi-projective varieties (V1 \W1) ∪ · · · ∪ (Vℓ \Wℓ).

Proposition 3.2.6. Let F,XF, Z be as in (3.2.6) and let πF : XF → Z be the coordinate projection
(3.2.7) with fibres XF,z = π−1

F (z). For any integer k, the set Zk = {z ∈ Z : χ(XF,z) = k} is
constructible. In particular, there exists an Euler stratification of the map πF.

We prove Proposition 3.2.6 using a result of Dimca and Papadima [DP03, Thm. 1].

Theorem 3.2.7. Let F ∈ C[x0, . . . , xd] be any non-constant homogeneous polynomial, and let
D(F) = {x ∈ Pd : F(x) ̸= 0} be its hypersurface complement. Consider the Gauss map

∇F : D(F)→ Pd, x 7→
(

∂F
∂x0

(x) : · · · :
∂F
∂xd

(x)
)

.

We have deg∇F = (−1)d · χ(D(F) \ H), where H ⊂ Pd is a generic hyperplane.

Proof of Proposition 3.2.6. The formula for χ(D(F) \ H) from Theorem 3.2.7 implies that

(−1)d · deg∇F(x, z) = χ(XF,z \ H)

= χ(XF,z)− χ(XF,z ∩ H)

= χ(XF,z)− (χ(Pd−1)− χ(X c
F,z ∩ H))
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for all z ∈ Z (notice that XF,z = D(F(x, z)) for any z ∈ Z). Using χ(Pd−1) = d we find

χ(XF,z) = d− χ(X c
F,z ∩ H) + (−1)d · deg∇F(x, z). (3.2.8)

For any k, we claim that the set Wk = {z ∈ Z : deg∇F(x, z) = k} is constructible. To see
this, note that the ramification locus of {(x, z, b) ∈ XF × Pd

b : ∇F(x, z) = b} → Z × Pd
b

is closed, and its image B ⊂ Z×Pd
b is constructible by Chevalley’s Theorem. Let B′ ⊂ Z

be the constructible subset consisting of the points z ∈ Z whose fibre along the projection
B → Z is d-dimensional. By construction, we have Z \ B′ = Wn∗ , where n∗ is the generic
degree of ∇F(x, z) for z ∈ Z. The same argument applies when we replace Z by any of
the irreducible components of B′ ⊂ Z. The claim follows by iterating this process.

For d = 1, we have X c
F,z ∩H = ∅ and Zk is constructible by (3.2.8). Proceed by induction

on d: if the statement is true in dimension d − 1, then {z ∈ Z : χ(X c
F,z ∩ H) = k} is

constructible for any k (Remark 3.2.4), which implies by (3.2.8) that Zk is constructible.

As mentioned in the beginning, the applications we have in mind require Euler strati-
fications of families of very affine hypersurface complements. That is, we are interested in
the Euler characteristic of the complement of the zero locus of a polynomial f in the torus

T = D(x0 · · · xd) = {(x0 : · · · : xd) ∈ Pd : x0 · · · xd ̸= 0} ∼= (C∗)d.

We continue to assume that Z ⊆ Pm is an irreducible quasi-projective variety, and we set

X ∗f = {(x, z) ∈ T × Z : f (x, z) ̸= 0} = XF, (3.2.9)

where F = x0 · · · xd f . The following is a consequence of Proposition 3.2.6 and X ∗f = XF.

Lemma 3.2.8. Let f ∈ C[z][x] be any bihomogeneous polynomial and let Z,X ∗f be as in (3.2.9).
The coordinate projection π f : X ∗f → Z admits an Euler stratification.

Whitney stratifications. Proposition 3.2.6 can also be proved via the theory of Whitney
stratifications, originally developed by Thom [Tho64] and Whitney [Whi65]. This proof
strategy works more generally when π : X → Z is a proper morphism of (abstract)
varieties. A statement that fits our scope precisely is hard to find in the literature, and a
self-contained explanation would be too much of a digression. Since the identity (3.2.8) is
useful in later sections, we chose to include the proof above and limit ourselves to a sketch
of the general argument.

In [Whi65, Thm. 19.2], Whitney states that every variety admits what is now called a
Whitney stratification. Here, variety means complex analytic variety. The fact that every
constructible set admits a Whitney stratification whose strata are again constructible is
stated explicitly and with an outline of proof in [Wal06, pp. 336–337]. A Whitney strat-
ification of a proper morphism π : X → Z (such as our morphism πc

F : X c
F → Z) is a

Whitney stratification of X and Z such that π maps each stratum SX of X into a stratum
SZ of Z, and the restriction πSX : SX → SZ is a submersion [HN23, Def. 6.1]. By Thom’s
first isotopy lemma [Mat12, Prop. 11.1], the topology of the fibres of π is constant on each
stratum SZ. In particular, the Euler characteristic is constant. It follows that the Whitney
stratification of π is an Euler stratification. The converse is not true: a priori, Euler strata
are unions of Whitney strata. We provide examples in the projective and very affine case.

Example 3.2.9. Consider the following family of cuspidal cubic plane curves:

X c
F =

{
(x, z) ∈ P2 ×P1 : z0x3

0 + z1x2
1x2 = 0

}
.
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For z /∈ {(1 : 0), (0 : 1)}, the fibre (πc
F)
−1(z) has a cusp singularity at the origin, implying

χ
(
(πc

F)
−1(z)

)
= 2 (see the paragraph on multisingularity strata and in particular Example

3.2.12 below). For z = (1 : 0), the cubic degenerates into a triple line, also with Euler
characteristic 2. Thus, an Euler stratification for πc

F is given by {(0 : 1)} ⊔ (P1 \ {(0 : 1)}),
whereas {(1 : 0)} necessarily forms a separate Whitney stratum. ♢

Example 3.2.10. Consider the family of very affine curve complements

(X ∗f )c =
{
(x, z) ∈ T ×P1 : (x1 + x2)(z0x1 + z1x2) = 0

}
.

Here, T is the torus (C∗)2 ∼= T ⊂ P2. For z /∈ {(1 : 0), (1 : 1), (0 : 1)}, the fibre of (X ∗f )c →
P1 consists of two lines intersecting at the origin. For z ∈ {(1 : 0), (1 : 1), (0 : 1)}, the fibre
consists of only one line through the origin. The Euler characteristic is always zero, hence
there is only a single Euler stratum. However, the topological types are different. ♢

Multisingularity strata. As seen in previous examples, Euler stratifications are closely
related to the singularity structure of X . In the following we recall some basic notions of
singularity theory following [GLS07] and elaborate on the relation to Euler stratifications.

Let U ⊆ Cd be an analytic open subset, f : U → C a holomorphic function and X =
V( f ) ⊂ U the hypersurface defined by f . The set of singular points of X is given by

Xsing =

{
x ∈ U : f (x) =

∂ f
∂x1

(x) = · · · = ∂ f
∂xd

(x) = 0
}

.

A point x ∈ Xsing is called an isolated singularity if there exists a neighbourhood V of x
such that (Xsing ∩ V) \ {x} = ∅. In singularity theory, isolated singularities are typically
studied up to right equivalence (analytic change of coordinates) or contact equivalence
(isomorphism of factor algebras). Let J( f ) denote the ideal sheaf ⟨ ∂ f

∂x1
, . . . , ∂ f

∂xd
⟩ · O(U)

and define the algebra M f ,x := OCd,x/J( f )OCd,x, called the Milnor algebra of f at x. Its
dimension as a C-vector space is the Milnor number of f at x. We write µ( f , x) = dimC M f ,x.
This number is a topological invariant of the singularity and plays a crucial role in our
considerations. Note that µ( f , x) > 0 if and only if x is a singular point of f and that µ( f , x)
is finite by an application of the Hilbert–Rückert Nullstellensatz. If X has only isolated
singularities y1, . . . , ym, then we define the total Milnor number to be µ(X) := ∑m

i=1 µ( f , yi).
The connection to Euler stratifications is established by the following statement.

Proposition 3.2.11 ([Par88, Cor. 1.7]). Let M be a d-dimensional smooth complex projective
variety and let L be a line bundle on M. For two sections s1, s2 ∈ H0(M,L), let X1 = V(s1) and
X2 = V(s2) denote their respective zero loci. If X1 and X2 have only isolated singularities, then we
have the equality µ(X1)− µ(X2) = (−1)d(χ(X1)− χ(X2)).

Example 3.2.12. A smooth cubic plane curve has Euler characteristic zero by the genus-
degree formula. A cusp singularity has Milnor number two. Therefore, a cuspidal plane
cubic has Euler characteristic two. The full stratification of plane cubics is shown in Figure
3.3. Each stratum of X c

F → Z = P9 ∼= Proj(C[x0, x1, x2]3) corresponds to a circle in the
figure. Strata with isolated singularities are labelled by their singularity type. Below
each circle, we record the Euler characteristic of X c

F,z on the stratum. The edges between
strata indicate the poset relation. The Euler characteristic of a fibre X c

F,z is invariant under
the action of GL(3, C) on ternary cubics. The ring of invariants is generated by I4 and I6,
which are homogeneous polynomials of degree four, respectively six, in the ten coefficients
z0, . . . , z9. These generators are unique up to scaling, and I4 is called the Aronhold invariant
[MS21, Ex. 11.12]. The closed stratum of nodal cubics (A1) is defined by the discriminant
I3
4 − I2

6 , and the cuspidal cubics (A2) are defined by I4 = I6 = 0. ♢
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Figure 3.3: The Euler stratification of plane cubics.

This shows that for families with only isolated singularities, any Euler stratum is a
union of multisingularity strata, i.e. loci where the general member of the hypersurface
family has prescribed topological types of singularities. However, multisingularity strata
are extremely hard to compute. Even for the case of plane curves, a complete description
of multisingularity strata are out of reach [DH88]. In [Est17], Esterov provides formulae
for the tropicalisation of the strata for two A1-singularities and one A2-singularity.

3.2.2. Points on the line
This subsection studies the case d = 1, corresponding to points on the projective line. In
this setting, it is possible to enumerate and parametrise all Euler strata. However, finding
implicit equations is challenging. Let n ∈ Z>0; simplifying notation, we set

X c =
{
(x, z) ∈ P1 ×Pn : z0xn

0 + z1xn−1
0 x1 + · · ·+ znxn

1 = 0
}

. (3.2.10)

We study the family given by the projection π : X c → Z. The topological Euler character-
istic of a fibre X c

z = π−1(z) is equal to the number of points of X c
z , ignoring multiplicities.

Hence, Euler strata are loci where certain roots of F = z0xn
0 + · · ·+ znxn

1 coincide. We label
these strata by integer partitions of n as follows. Let λ = (λ1, . . . , λk) be such a partition.
For any k > 0, the set Zk = {z ∈ Z : χ(X c

z ) = k} is a disjoint union of strata Zk = ⨿|λ|=k Sλ

ranging over all partitions of n with length k. Here, Sλ denotes the set

Sλ = {z ∈ Pn : X c
z has k distinct points with multiplicities λ1, . . . , λk} . (3.2.11)

These are called coincident or multiple root loci, or Brill–Gordan loci in the literature, see e.g.
[Chi03, FNR06, Kur12, LS16, Wey89]. In the following we review some important results.

Let ≺ denote the partial order on the set of partitions given by refinement. That is,
λ = (λ1, . . . , λk) refines µ = (µ1, . . . , µl), written λ ≺ µ, if and only if there exists a
partition (I1, . . . , Il) of [k] such that for any 1 ≤ i ≤ l : µi = ∑j∈Ii

λj. An example of
the resulting lattice for partitions of five can be seen in Figure 3.4. The partitions are
labelled by Young diagrams, and by strings like 213, representing λ = (2, 1, 1, 1). Each
circle represents an irreducible Euler stratum of π : X c ⊂ P1 × P5 → P5. The following
theorem is well-known.

Theorem 3.2.13. Let X c be as in (3.2.10) and consider the projection π : X c → Z = Pn.

(i) The set of coincident root loci {Sλ}λ ranging over all partitions λ of n, ordered by refinement
so that Sλ ≺ Sλ′ ⇔ λ′ ≺ λ, forms an Euler stratification of π.
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Figure 3.4: Young diagrams with five boxes index the strata of π : X c ⊂ P1 ×P5 → P5.

(ii) The Zariski closure ∇λ of Sλ is an irreducible projective variety. It equals the disjoint union
∇λ = ⨿λ≺λ′ Sλ′ , where ≺ denotes refinement of partitions.

(iii) For z ∈ Sλ, the Euler characteristic of the fibre is χ(X c
z ) = |λ|. This equals the dimension

dim Sλ = dim∇λ = |λ| and the height of the corresponding Young diagram.

Hilbert proved in [Hil87] that the degree of the k-dimensional projective variety ∇λ is

deg(∇λ) =
k!

m1!m2! . . . mn!
· λ1λ2 . . . λk,

where mj := #{i : λi = j}. In general, not much is known about the structure of the
ideal I(∇λ) defining ∇λ. When λ is of the form λ = (1n−a, a) for a ≥ ⌊n/2⌋+ 2, Weyman
showed that I(∇λ) is generated in degree ≤ 4 [Wey89]. Moreover, for |λ| = 2, Abdesselam
and Chipalkatti proved that I(∇λ) is generated in degree ≤ 4 [AC06, Prop. 20].

Chipalkatti describes a generating set for I(∇λ) in terms of covariant forms [Chi04].
We can deduce an upper bound on the number of generators of I(∇λ) using [Chi04, Thm.
3.5 & Prop. 3.6] as follows: Let Cλ be the set of all n-partitions µ ⊀ λ that are minimal with
this property, i.e. Cλ = {µ ⊀ λ : ν ≺ µ⇒ ν ≺ λ}. Then I(∇λ) can be generated by n! · |Cλ|
many polynomials. For example, consider the partition λ = (3, 2). Then Cλ = {(4, 1)} and
hence I(∇λ) can be generated by ≤ 5! polynomials. This bound is not optimal, as I(∇λ)
is minimally generated by 28 polynomials, see [LS16, Tbl. 1].

Computing defining equations for ∇λ quickly becomes a challenging task. For exam-
ple, I(∇213) (appearing in Figure 3.4) is the zero locus of the discriminant of the binary
quintic, which is a degree eight polynomial with 59 terms:

z2
1z2

2z2
3z2

4 − 4 z0z3
2z2

3z2
4 − 4 z3

1z3
3z2

4 + 18 z0z1z2z3
3z2

4 − 27 z2
0z4

3z2
4 − 4 z2

1z3
2z3

4 + · · ·+ 3125 z4
0z4

5.

In [LS16], the authors present a table with the degrees of the minimal generators for the
ideals I(∇λ) for n ≤ 7. This can be done efficiently (and heuristically) by using finite field
computations. In Section 3.2.6, we extend these results to n = 8. Moreover, we compute
all generators for n = 1, . . . , 8 over Q. For this, we use the fact that Sλ is parametrised by

(P1)k 99K Sλ, ((a1 : b1), . . . , (ak : bk)) 7−→ (a1x0 + b1x1)
λ1 · · · (akx0 + bkx1)

λk . (3.2.12)

As indicated earlier, applications in statistics and physics require studying Euler strat-
ifications of families of very affine hypersurfaces in the algebraic torus. We modify the
previous constructions by disregarding points at zero and infinity. That is, we consider

(X ∗)c = {(t, z) ∈ C∗ ×Pn : z0 + z1t + · · ·+ zntn = 0}, (3.2.13)

61



Figure 3.5: The Euler stratification of five points in C∗.

with projection π : (X ∗)c → Z = Pn. Notice that, while previously all Euler strata were
necessarily stable under the action of GL(2, C) on binary forms of degree n, this symmetry
is now broken. This leads to a significant increase in the number of strata.

Strata are now labelled by two nonnegative integers m0, m∞ such that m0 +m∞ ≤ n, and
a partition of n−m0−m∞. For instance, the stratum corresponding to m0 = 0, m∞ = 2 and
the partition 21 of 3 consists of binary quintics with a root of multiplicity two at infinity,
and two roots in C∗, one of which has multiplicity two and one of which is simple. In
Figure 3.5, we label such a stratum for n = 5 by the corresponding partition, with the
integers m0 and m∞ written to the left, respectively to the right of it. The above stratum is
0|21|2. The poset from Figure 3.4 appears on the right side of Figure 3.5, considering only
strata with m0 = m∞ = 0.

Much like the strata Sλ in (3.2.12), the stratum Sm0|λ|m∞
is parametrised by

(P1)k 99K Sm0|λ|m∞
, ((a1 : b1), . . . , (ak : bk)) 7−→ xm0

1 (a1x0 + b1x1)
λ1 · · · (akx0 + bkx1)

λk xm∞
0 .

Equations for its closure ∇m0|λ|m∞
are thus easily deduced from equations for ∇λ. To

define the partial ordering of the strata Sm0|λ|m∞
, let (m0, λ, m∞) be the unique partition of

n for which Sm0|λ|m∞
⊆ S(m0,λ,m∞). The following definition of “≺” is natural:

m0|λ|m∞ ≺ m′0|λ′|m′∞ ⇐⇒ (m0, λ, m∞) ≺ (m′0, λ, m′∞), m0 ≤ m′0 and m∞ ≤ m′∞. (3.2.14)

Theorem 3.2.14. Let (X ∗)c be as in (3.2.13) and consider the projection π : (X ∗)c → Z = Pn.

(i) The set of strata
{

Sm0|λ|m∞

}
ranging over all m0 + m∞ ≤ n and all partitions λ of n−m0−

m∞, ordered by (3.2.14), forms an Euler stratification of π.

(ii) The Zariski closure ∇m0|λ|m∞
of Sm0|λ|m∞

is an irreducible projective variety. It equals the
disjoint union ∇m0|λ|m∞

= ⨿m0|λ|m∞≺m′0|λ′|m′∞ Sm′0|λ′|m′∞ .

(iii) For z ∈ Sm0|λ|m∞
, the Euler characteristic of the fibre is χ((X ∗)c

z) = |λ|. This equals the
dimension dim Sm0|λ|m∞

= dim∇m0|λ|m∞
= |λ|.

As a consequence of Theorem 3.2.14, the number of strata is ∑n
i=0(n+ 1− i)P(i), where

P(i) is the number of partitions of i. This is large compared to the P(n) strata for (3.2.10).
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Algorithm 2 Euler stratification of X ∩ Hz

Input: homogeneous generators f1, . . . , fℓ ∈ Q[x0, . . . , xN ] of the vanishing ideal of X =
V( f1, . . . , fℓ) satisfying the assumptions of Proposition 3.2.15 and an integer 1 ≤ k ≤ deg X
Output: ideal I ∈ Q[z0, . . . , zN ] such that: z ∈ V(I) generic⇒ χ(X ∩ Hz) = deg X− k

1: ∆X ← defining equation of X∨ in Q[X0, . . . , XN ]
2: m← maximal ideal generated by ⟨X0 − z0, . . . , XN − zN⟩ ⊂ Q(z0, . . . , zN)[X0, . . . , XN ]
3: Q← quotient ring Q(z0, . . . , zN)[X0, . . . , XN ]/mk

4: M← companion matrix representing multiplication by ∆X in Q
5: return ideal generated by entries of M

To end the subsection, we replace P1 by a smooth projective curve X ⊂ PN and con-
sider families of points arising as the intersection of X with a hyperplane Hz. Here, the
index z stands for the coefficients of the defining linear equation of H: z ∈ Z = (PN)∨.
Our goal is to compute the Euler stratification of Z, i.e. the loci in Z where X ∩ Hz consists
of a constant number of points. Note that if X ⊂ Pn is the rational normal curve of degree
n, then we recover the Euler stratification of (3.2.10). Our algorithm is deduced from the
following expression for the Euler characteristic.

Proposition 3.2.15. Let X be a one-dimensional smooth projective variety such that the dual
variety X∨ is a hypersurface. Let H ∈ X∨ be such that (X ∩ H)sing is finite. Then

χ(X ∩ H) = deg X−multH X∨.

Here, multH X∨ denotes the multiplicity of H ∈ X∨. Proposition 3.2.15 is a consequence
of Theorem 3.2.16, which summarises [Tev06, Thm. 10.8 & Thm. 10.9].

Theorem 3.2.16. Let X ⊂ PN be a smooth d-dimensional projective variety such that X∨ is a
hypersurface. Let H ∈ X∨, and let L be a line bundle on X.

(i) If (X ∩ H)sing is finite, then the multiplicity of X∨ at H is given by

multH X∨ = ∑
p∈(X∩H)sing

µ(X ∩ H, p).

(ii) For a global section s ∈ H0(X,L) \ {0} of L with zero locus V ⊂ X, we have

µ(V) = (−1)d(χ(V)− χ(X,L)),

where χ(X,L) is the Euler characteristic of the zero locus of a generic section.

Proof of Proposition 3.2.15. Choose s ∈ OX(1) so that X ∩ H = s−1(0) = V. For X one-
dimensional, we have χ(X,OX(1)) = deg X and, using Theorem 3.2.16(ii), we obtain

µ(X ∩ H) = ∑
p∈(X∩H)sing

µ(X ∩ H, p) = deg X− χ(X ∩ H). (3.2.15)

Combining (3.2.15) with Theorem 3.2.16(i), we arrive at the desired statement.

Proposition 3.2.15 gives rise to Algorithm 2, which we illustrate in the following.

Example 3.2.17. Let X = V( f ) ⊂ P2 be the elliptic curve defined by f = x3
0− x0x2

2− x2
1x2 +

x3
2. The output of Algorithm 2 for k = 1 is the defining equation of the dual curve X∨:

4z6
0 + 4z5

0z2 + z4
0z2

1 + 36z3
0z2

1z2− 4z3
0z3

2 + 18z2
0z4

1 + 30z2
0z2

1z2
2 + 24z0z4

1z2− 23z6
1 + 54z4

1z2
2− 27z2

1z4
2.
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This vanishes on z ∈ (P2)∨ for which Hz = {z0x0 + z1x1 + z2x2 = 0} intersects X in at
most two points. For k = 2, the algorithm returns an ideal whose radical is generated by

z3
0 − 9z0z2

1 − 3z0z2
2 − 6z2

1z2, z2
0z2

2 − 50z0z2
1z2 − 18z0z3

2 + 28z4
1 − 63z2

1z2
2,

7z2
0z1z2 + 56z0z3

1 + 18z0z1z2
2 + 45z3

1z2 − 9z1z3
2, 28z2

0z2
1 + 9z2

0z2
2 + 54z0z2

1z2 + 6z0z3
2 + 21z2

1z2
2.

This defines nine points z ∈ (P2)∨ for which Hz intersects X in a single point. ♢

3.2.3. Projective hypersurfaces
We switch to the hypersurface setting. Throughout the subsection, F(x, z) ∈ C[z][x] is a
bihomogeneous polynomial in variables x = (x0, . . . , xd) and parameters z = (z0, . . . , zm).
We develop an algorithm for computing the Euler stratification of the family

πF : XF → Z, where XF = {(x, z) ∈ Pd × Z : F(x, z) ̸= 0}. (3.2.16)

For simplicity, we assume that Z is a closed irreducible subvariety of Pm. The first task
is to determine for which z ∈ Z the Euler characteristic of XF,z = π−1

F (z) differs from the
generic value. This is made precise by the Euler discriminant of the family. We point out
that this term was coined by Esterov in [Est13, §1.2] to mean something slightly different.

Definition 3.2.18. By Proposition 3.2.6, there exists an integer χ∗ (the generic Euler charac-
teristic) and a dense open Euler stratum S∗ ⊆ Z such that χ(XF,z) = χ∗ for all z ∈ S∗. The
Euler discriminant variety of πF : XF → Z is the Zariski closure of Z \ S∗ in Z. We denote
this variety by ∇χ(πF), or simply ∇χ.

Algorithm 3 Euler stratification of (3.2.16)
Input: bihomogeneous polynomial F ∈ Q[x, z] and the defining ideal IZ of Z
Output: prime ideals of closed strata in the Euler stratification of πF : XF → Z

1: strata0 ← {IZ}
2: i← 0
3: while stratai ̸= {Q[z]} do ▷ iteration ends when computed strata are empty
4: i← i + 1
5: stratai ← {} ▷ initialise an empty list of strata
6: for I ∈ stratai−1 do
7: I(∇χ)← Euler discriminant ideal of XF ∩ (Pd × V(I))
8: stratai ← stratai ∪ {minimal primes of I(∇χ)}
9: end for

10: end while
11: return

⋃
i stratai

Computing an Euler stratification comes down to an iterated computation of Euler
discriminants. This is clarified by Algorithm 3, which uses the notation IZ = I(Z) for
the vanishing ideal of Z ⊆ Pm. The algorithm computes the Euler discriminant for z ∈
V(IZ) = Z first. After that, it restricts the family to each of the irreducible components of
∇χ to find deeper strata, and so on. Notice that one can easily adapt the algorithm to keep
track of the partial order relations between strata. The important step in the algorithm is
Line 8, the computation of ∇χ. The rest of the subsection is devoted to that step.

Our algorithm uses a formula from [Huh12] which expresses χ(D(F)) in terms of the
cohomology class of the graph of the Gauss map ∇F. This is the closure Γ = Γ◦ of

Γ◦ = {(x, y) ∈ D(F)× (Pd)∨ : y = ∇F(x)} (3.2.17)
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in Pd× (Pd)∨. In what follows, let Hk, H∨k be generic k-planes in Pd and (Pd)∨ respectively,
and let [Hk × H∨ℓ ] be the generators of the Chow ring of Pd × (Pd)∨. We state a version of
Huh’s result [Huh12, Thm. 9] and outline a geometric proof.

Theorem 3.2.19. Let F ∈ C[x0, . . . , xd] be any non-constant homogeneous polynomial, and let
D(F) = {x ∈ Pd : F(x) ̸= 0} be its hypersurface complement. Suppose that

[Γ] =
d

∑
i=0

ei [Hd−i × H∨i ] ∈ Ad(P
d × (Pd)∨)

is the class of Γ from (3.2.17) in the Chow ring of Pd × (Pd)∨. Setting H−1 = ∅, we have

χ(D(F)) =
d

∑
i=0

χ((D(F) ∩ Hi) \ (D(F) ∩ Hi−1)) =
d

∑
i=0

(−1)i deg∇F|Hi
=

d

∑
i=0

(−1)i ei.

Proof. The first equality follows from excision. The second equality is Theorem 3.2.7:

deg∇F|Hi
= (−1)i χ((D(F) ∩ Hi) \ (D(F) ∩ Hi−1)).

It remains to show that deg∇F|Hi
equals ei. That is, deg∇F|Hi

equals the number of
intersection points in Γ ∩ (Hi × H∨d−i). The linear space Hi can be represented as the
projectivised row span of an (i + 1)× (d + 1) matrix Li. Let x̃0, . . . , x̃i be coordinates on
Hi, so that x = Lt

i · x̃. We set F|Hi
= F(Lt

i · x̃), and the chain rule implies that

∇F|Hi
(x̃) =

(
∂F|Hi

∂x̃0
: · · · :

∂F|Hi

∂x̃i

)
= Li

((
∂F
∂x0

: · · · :
∂F
∂xd

) ∣∣∣∣
x=Lt

i ·x̃

)
.

Here, Li(y) denotes the projection Li : (Pd)∨ 99K (Pi)∨ represented by the matrix Li. This
establishes a bijection between the set {x̃ ∈ D(F) ∩ Hi : ∇F|Hi

(x̃) = ỹ} and

{(x, y) ∈ Γ : x ∈ Hi, Li(y) = ỹ} = Γ ∩ (Hi × H∨d−i)

for generic ỹ ∈ (Pi)∨. The condition Li(y) = ỹ determines a (d − i)-dimensional linear
space H∨d−i in which y is contained. The intersection Γ ∩ (Hi × H∨d−i) is transverse, so that

deg∇F|Hi
= |{x̃ ∈ D(F) ∩ Hi : ∇F|Hi

(x̃) = ỹ}| = |Γ ∩ (Hi × H∨d−i)| = ei.

The numbers ei can be read from the coefficients of the (bigraded) Hilbert polynomial
of Γ, see [Huh12, §2]. They can also be computed numerically, without computing the ideal
of Γ, by intersecting Γ◦ from (3.2.17) with products of random linear spaces Hi×H∨d−i. The
number of intersection points is ei. Alternatively, one computes the cardinality of a generic
fibre of ∇F|Hi

: D(F) ∩ Hi → Pi. We have implemented these approaches in Julia. For this,
we rely on the numerical homotopy continuation algorithms implemented in [BT18].

Example 3.2.20. We consider the cuspidal plane curves from Example 3.2.9. For z = (1 : 1),
our implementation computes the following information, which is easily verifiable:

e0 = deg∇F|H0
= 1, e1 = deg∇F|H1

= 2, e2 = deg∇F|H2
= 2. ♢

By Theorem 3.2.19, the Euler discriminant ∇χ(πF) is contained in the union of loci
where the degrees of the restrictions of the Gauss map ∇F(x, z)|Hi

drop. Let n∗ be the
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degree of ∇F(x, z) for generic z ∈ Z. We define the polar discriminant of a nonzero homo-
geneous polynomial F ∈ C[z][x] as the Zariski closure of

{z ∈ Z : deg∇F(x, z) < n∗} ⊂ Z.

We now propose a randomised algorithm for computing the polar discriminant.
Let b ∈ (Pd)∨ be a generic point. The degree of ∇F is the number of points x ∈ D(F)

satisfying ∇F(x) = b. Adding parameters z ∈ Z, we consider the incidence variety

Y◦b =

{
(x, z) ∈ XF : rank

(
∂F(x,z)

∂x0

∂F(x,z)
∂x1

· · · ∂F(x,z)
∂xd

b0 b1 · · · bd

)
≤ 1

}
. (3.2.18)

Here, XF is as in (3.2.16). The closure of Y◦b in Pd × Z is denoted by Yb. By assumption,
the projection πZ : Yb → Z has generically finite fibres of cardinality n∗. The polar
discriminant is contained in the image of Yb \ Y◦b = Yb ∩ V(F(x, z)) under that projection.

Proposition 3.2.21. Let XF be the family from (3.2.16), with Z ⊆ Pm any irreducible quasi-
projective variety. Let Y◦b be as in (3.2.18), where b ∈ Pd is generic. The variety Yb ∩ V(F) has
dimension at most dim Z− 1. Hence, πZ(Yb ∩ V(F)) ⊊ Z is a strict containment.

Proof. The following incidence variety is irreducible of dimension d + dim Z:

Y◦ = {(x, z, b) ∈ XF ×Pd
b : ∇F(x, z) = b}. (3.2.19)

This is seen from the obvious parametrisation XF → Y◦. A general fibre of the dominant
map Y◦ → Pd

b is of pure dimension dim Z. That fibre is Y◦b , so its boundary in the closure
Yb = Y◦b has dimension at most dimYb − 1 = dim Z− 1.

The containment of the polar discriminant in πZ(Yb ∩ V(F)) might be strict. For in-
stance, there might be components which depend on the specific choice of b, see Example
3.2.22. We can discard such spurious loci by repeating this procedure for several values of
b and intersecting the results. Here, dim Z + 1 ≤ m + 1 random choices for b suffice. The
discussion is summarised in Algorithm 4. Lines 3 and 4 can be executed using standard
Gröbner basis techniques.

Algorithm 4 Polar discriminant of ∇F(x, z)
Input: bihomogeneous polynomial F ∈ Q[z][x] and the defining ideal IZ of Z
Output: minimal primes of the ideal defining the polar discriminant of F

1: for i = 0, . . . , dim Z do
2: bi ← a random point in (Pd

Q)
∨

3: compute the vanishing ideal of the closure Ybi
of Y◦bi

in (3.2.18)
4: Ii ← the defining ideal of the projection πZ(Ybi

∩ V(F(x, z)))
5: end for
6: return minimal primes of I0 + I1 + · · ·+ Idim Z

Example 3.2.22. The polar discriminant of the ternary quadric in (3.2.1) is (3.2.3). It is
computed efficiently with our code, see [TW24b], choosing uniformly random integers
bi between −100 and 100, a total number of dim Z + 1 = 6 times. Each of the ideals Ii
in Algorithm 4 decomposes as ⟨∆⟩ ∩ ⟨G(z, b)⟩, where G(z, b) defines a hypersurface in
Z = P5 which depends on b. ♢
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Algorithm 5 Upper bound for the Euler discriminant of πF : XF → Z
Input: bihomogeneous polynomial F ∈ Q[z][x] and the defining ideal IZ of Z
Output: minimal prime ideals of a variety containing the Euler discriminant of πF : XF → Z

1: for i = 0, . . . , d− 1 do
2: Ii ← ⟨0⟩
3: for j = 0, . . . , dim Z do
4: Hi,j ← random i-plane in Pd

5: Ii ← Ii + ideal of the polar discriminant of (∇F|Hi,j
, Z)

6: end for
7: end for
8: Id ← polar discriminant of (∇F, Z)
9: return minimal primes of I0 ∩ I1 ∩ · · · ∩ Id

The polar discriminant characterises for which z ∈ Z the degree of ∇F drops. By
Theorem 3.2.19, for computing the Euler discriminant, we must also check the degrees
of the restrictions ∇F|Hi

for generic i-planes Hi ⊆ Pd. The polar discriminant of ∇F|Hi
:

D(F) ∩ Hi → Pi may depend on Hi. Similarly as above, we can eliminate unwanted
contributions by computing the polar discriminant repeatedly, for m + 1 choices of Hi.
This happens in lines 1–7 in Algorithm 5. The union of all these polar discriminants may
contain the Euler discriminant strictly (see Example 3.2.23). Nonetheless, by Proposition
3.2.21, using Algorithm 5 in line 7 of Algorithm 3 leads to a correct but possibly redundant
Euler stratification.

Example 3.2.23. We have seen in Example 3.2.9 that the Euler discriminant for F(x, z) =
z0x3

0 + z1x2
1x2 is given by z0 = 0. The fibre of ∇F over (b0 : b1 : b2) consists of two points(√

b0

3z0
:

√
b2

z1
:

b1

2z1

√
z1

b2

)
,

(√
b0

3z0
: −

√
b2

z1
: − b1

2z1

√
z1

b2

)
.

When (z0 : z1) → (0 : 1), these points approach (1 : 0 : 0). The point (1 : 0 : 0)× (0 : 1)
is indeed contained in Yb ∩ V(F(x, z)). A similar argument shows that (1 : 0) is also
contained in the polar discriminant of ∇F. However, (1 : 0) does not belong to the Euler
discriminant: for z = (1 : 0), the alternating sum ∑2

i=0(−1)iei = 1, as for generic z. ♢

Example 3.2.23 raises the question to what extent the polar and Euler discriminant
agree. For plane curve families with isolated singularities, it turns out that they coincide.

Proposition 3.2.24. Let F(x0, x1, x2, z) be a squarefree bihomogeneous polynomial. If Z ⊆ Pm is
such that the degree of the (reduced) plane curve X c

F,z ⊂ P2 is constant for all z, then the Euler
discriminant of XF → Z coincides with the polar discriminant of F.

Proof. It follows from Theorem 3.2.7 that for any z, z′ ∈ Z, we have

χ(XF,z)− χ(XF,z′) = deg∇F(x, z)− deg∇F(x, z′)− (degX c
F,z − degX c

F,z′).

3.2.4. Very affine hypersurfaces
Our original motivation for studying Euler stratifications comes from statistics and particle
physics. In these applications, the families of interest are those from Equation (3.2.9):

X ∗f = {(x, z) ∈ T × Z : f (x, z) ̸= 0} = XF, where F(x, z) = x0 · · · xd f (x, z). (3.2.20)
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As in the Introduction, T = D(x0 · · · xd) is the dense torus of Pd. In physics, the signed
Euler characteristic of XF,z measures the number of master integrals, which form a basis of
a vector space generated by Feynman integrals [AFST24, BBKP19]. The dimension of that
vector space depends on kinematic parameters, here captured by z. In algebraic statis-
tics, very affine hypersurface complements arise as toric models, i.e. discrete exponential
families, see Section 2.2. The general result Theorem 2.2.12 implies that the maximum
likelihood degree of such models equals the signed Euler characteristic of XF,z. In this
context, z are model parameters. Euler stratifications aim to understand completely how
the ML degree depends on z, thereby providing an answer to Problem 3.0.1.

We start by considering families in which the monomial support of f is fixed, and all
coefficients vary freely. More precisely, we fix a matrix A with nonnegative integer entries
of size (d + 1)× (m + 1) with no repeated columns, and with constant column sum n > 0.
In Example 3.2.2, the parameters are d = 2, m = 5 and n = 2. The columns of A are the
integer vectors a0, . . . , am ∈Nd+1. They serve as exponents in the formula for f (x, z):

f (x, z) = z0 xa0 + z1 xa1 + · · · + zm xam . (3.2.21)

The Euler discriminant from Definition 3.2.18 of the family XF → Z = Pm is well-
understood. We summarise this in Theorem 3.2.25 below, which needs some more no-
tation. The convex hull conv(A) of the columns of A is a polytope in Rd+1 of dimension
at most d. Its lattice volume is denoted by vol(A). The A-discriminant variety ∇A is the
closure of all parameter values z∗ for which V( f (x, z∗))∩ T is singular. If∇A has codimen-
sion one, then its defining equation is denoted by ∆A (this is defined up to a nonzero scalar
multiple). If ∇A has codimension at least two, we set ∆A = 1. The principal A-determinant
is defined as the following A-resultant:

EA(z) = ResA

(
f , x1

∂ f
∂x1

, . . . , xd
∂ f
∂xd

)
∈ Q[z0, . . . , zm].

For more background, see [GKZ08, Ch. 10]. The polynomial EA(z) is known to factor into
a product of discriminants. For each face Q ⪯ conv(A), let AQ be the submatrix of A
consisting of columns which lie on Q. By [GKZ08, Ch. 10, Thm. 1.2], we have

EA(z) = ∏
Q⪯conv(A)

∆eQ
AQ

. (3.2.22)

Here, eQ ≥ 1 is the multiplicity of the toric variety XA along its torus orbit corresponding
to Q. The next theorem summarises [ABB+19, Thm. 13] and [Est13, Thm. 2.36].

Theorem 3.2.25. The signed Euler characteristic (−1)d · χ(X ∗f ,z) = (−1)d · χ(XF,z) with f (x, z)
as in (3.2.21) is vol(A) if and only if EA(z) ̸= 0. Moreover, for a generic point z on a codimension-
one discriminant ∇AQ , we have vol(A)− (−1)d · χ(XF,z) = eQ, with eQ as in (3.2.22).

Example 3.2.26. The principal A-determinant EA from Example 3.2.2 has seven factors,
one for each face of the triangle conv(A). The toric variety of A is the 2-uple embedding
of P2. Its multiplicity along each torus orbit is one. All exponents in (3.2.22) are one, and
the Euler characteristic differs from its generic value by one on each component of

{EA(z) = 0}. ♢

Before switching back to the case where Z is any irreducible subvariety of Pm, we
discuss useful formulae for χ(XF,z∗) = χ(D(F(x, z∗))) when z = z∗ is fixed and arbitrary.
In Theorem 2.2.12, the signed Euler characteristic of D(F) is expressed as the number of
critical points of the log-likelihood function. We rephrase this theorem as follows.
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Theorem 3.2.27. Let F(x) = x0 · · · xd f (x) ̸= 0. There is a dense open subset U ⊆ Pd such that
for (ν0 : ν1 : . . . : νd) ∈ U, the following equations have precisely (−1)d · χ(D(F)) nondegenerate
isolated solutions in D(F) = T \ V( f ):

ν1

x1
+ ν0

∂x1 f
f

= · · · = νd

xd
+ ν0

∂xd f
f

= 0. (3.2.23)

In Theorem 3.2.27, a nondegenerate isolated solution is a point x ∈ D(F) satisfying (3.2.23)
at which the Jacobian determinant of these d equations does not vanish. The notation ∂xi f
is short for ∂ f

∂xi
. Using coordinates ti =

xi
x0

on T, one writes the equations (3.2.23) as

dlog f (1, t1, . . . , td)
ν0 tν1

1 · · · t
νd
d = 0. (3.2.24)

Theorem 3.2.27 has important practical implications: it turns out that computing Euler
characteristics of very affine hypersurfaces via critical points is efficient and reliable in
practice, see e.g. [ABF+23, AFST24, MHMT23]. Below, we will use Theorem 3.2.27 to
compute Euler discriminants.

Theorem 3.2.7 expresses the degree of ∇F as a sum of Euler characteristics:

deg∇F = (−1)d · χ(D(F)) + (−1)d−1 · χ(D(F) ∩ H). (3.2.25)

We explain how this is a decomposition of critical points according to a likelihood degenera-
tion, in the sense of [ABF+23]. First, we show deg∇F is indeed a critical point count.

Proposition 3.2.28. Let 0 ̸= f ∈ C[x0, . . . , xd]n be a form of degree n and let L = b0x0 +
· · · + bdxd ∈ C[x0, . . . , xd]1 be a generic linear form. The degree of the Gauss map ∇F with
F = x0x1 · · · xd f equals the number of solutions in D(F · L) to the equations

1
xi

+
∂xi f

f
− (d + n + 1)

bi

L
= 0, i = 1, . . . , d. (3.2.26)

Proof. By definition, the degree of ∇F is the number of points x ∈ D(F) satisfying

rank

(
∂F
∂x0

∂F
∂x1

· · · ∂F
∂xd

b0 b1 · · · bd

)
= rank

(
1
x0
+

∂x0 f
f

1
x1
+

∂x1 f
f · · · 1

xd
+

∂xd f
f

b0 b1 · · · bd

)
= 1,

for a generic point b ∈ Pd. Here we divided the first row of the matrix by F = x0x1 · · · xd f ,
which does not change the rank. Multiplying from the right with the matrix obtained by
replacing the first column of the identity matrix with (x0, . . . , xd), we obtain the equations

rank

(
d + n + 1 1

x1
+

∂x1 f
f · · · 1

xd
+

∂xd f
f

b0x0 + · · ·+ bdxd b1 · · · bd

)
= 1.

Note that this last step is allowed because F has the special form F = x0x1 · · · xd f . Since b
is generic, we find that L(x) = b0x0 + · · ·+ bdxd ̸= 0, and we obtain (3.2.26).

In t-coordinates, the equations (3.2.26) are the critical point equations given by

dlog f (1, t1, . . . , td) t1 · · · td L(1, t1, . . . , td)
−(d+n+1) = 0. (3.2.27)

The decomposition (3.2.25) is seen from Theorem 3.2.27 and Proposition 3.2.28 by intro-
ducing a parameter ε in the exponents, and taking the limit ε→ 0. Explicitly, we set

L(ε) = f (1, t1, . . . , td)
(1−ε)ν0+εtν1(1−ε)+ε

1 · · · tνd(1−ε)+ε
d L(1, t1, . . . , td)

−ε(d+n+1).

69



The solutions to dlogL(ε) = 0 are tuples of Puiseux series in ε. For ε = 1, they evaluate to
the (deg∇F)-many solutions to (3.2.27). The equations are explicitly given by

νi(1− ε) + ε

ti
+ ((1− ε)ν0 + ε)

∂ti f̃
f̃
− ε(d + n + 1)

bi

L̃
= 0, i = 1, . . . , d, (3.2.28)

where f̃ = f (1, t) and L̃ = L(1, t). When ε→ 0, the solutions split up into two groups. The
first group of solutions is of the form t(ε) = t(0)+ higher order terms in ε, with the lowest
order term t(0) ∈ (C∗)d satisfying L(1, t(0)) ̸= 0. Vanishing of the lowest order term in
(3.2.28) implies that these solutions converge to the critical points of (3.2.24). The leading
term t(0) ∈ (C∗)d of the second group of solutions satisfies L(1, t(0)) = 0, and L(1, t(ε)) =
εL(0)+ higher order terms, with L(0) ∈ C∗. In particular, these solutions converge to points
on H = V(L). Plugging these ansätze for t and L into (3.2.28) and setting the lowest order
term to zero shows that t(0) are the critical points of the restriction of tν1

1 · · · t
νd
d f̃ ν0 to H.

By Theorem 3.2.27, the first group of solutions consists of (−1)d · χ(D(F)) points, and
the second group has (−1)d−1 · χ(D(F) ∩ H) solutions. They sum up to the number of
solutions to (3.2.27) by Equation (3.2.25).

Remark 3.2.29. The discussion above amounts to solving the equations (3.2.28) tropically.
We have described the valuation of the coordinates ti, L̃ on D(L) for each ε-series solution.
For more, see [ABF+23, §7].

Example 3.2.30. We work out an example with d = n = 1. Let f = x1 − x0, L = x1 − 2x0.
We are interested in the critical points of logL(ε), given in the coordinate t = x1/x0 by

L(ε) = (t− 1)ν0(1−ε)+εtν1(1−ε)+ε(t− 2)−3ε.

For concreteness, we choose ν0 = −11, ν1 = 17. The solutions of (3.2.28) are

t±(ε) =
29− 27ε±

√
25 + 154ε− 167ε2

2(6− 7ε)
.

The two solutions of (3.2.27) are t±(1) = −1∓
√

3. When ε → 0, the solutions converge
to t+(0) = 17/6 and t−(0) = 2. Here {17/6} is the unique critical point of (3.2.24) (it is
rational since |χ(D(x0x1 f ))| = 1), and {2} = V(L). Equation (3.2.25) reads 2 = 1+ 1. ♢

Theorem 3.2.27 can be used to show that the Euler characteristic of very affine hy-
persurfaces is semicontinuous. This is not the case for general projective hypersurface
families, see Example 3.2.1.

Theorem 3.2.31. Let XF be the family from (3.2.20), with Z ⊆ Pm any irreducible quasi-projective
variety. The set Z≤k =

⋃
q≤k Zq, with Zq = {z ∈ Z : (−1)d · χ(XF,z) = q}, is closed in Z.

Proof. By Lemma 3.2.8, the set Zq is constructible. That is, Zq has a decomposition

Zq = (Vq
1 \Wq

1 ) ∪ · · · ∪ (Vq
mq \Wq

mq),

where Vq
i = Vq

i \Wq
i are irreducible closed subvarieties of Z. By Theorem 3.2.27, the Euler

characteristic of XF,z for z ∈ Vq
i is the generic number of nondegenerate isolated solutions

to the following system of d + 1 parametric polynomial equations on (C∗)d+1:

ν1 x−1
1 + ν0 y ∂1 f = · · · = νd x−1

d + ν0 y ∂d f = y f − 1 = 0.

By [SW+05, Thm. 7.1.4], this quantity is semicontinuous, and the maximum q is attained
for generic ν, z in the dense open subset Vq

i \Wq
i . We conclude that Vq

i ⊆ Z≤q ⊆ Z≤k. As a
consequence, Zq ⊆ Z≤k, and we are done. This proof appeared in [FMT24, Thm. 3.1].
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Algorithm 6 Euler discriminant of πx0x1···xd f : Xx0x1···xd f → Z
Input: bihomogeneous polynomial f ∈ Q[x, z] and the defining ideal IZ of Z
Output: minimal prime ideals of the Euler discriminant of πx0x1···xd f : Xx0x1···xd f → Z

1: for i = 0, . . . , dim Z do
2: ν← a random point in Pd

3: compute the vanishing ideal of the closure Yν of Y◦ν in (3.2.29)
4: Ii ← the defining ideal of the projection πZ(Yν ∩ V(F))
5: end for
6: return minimal primes of I0 + I1 + · · ·+ Idim Z

Algorithm 5 can in principle be used to compute the Euler discriminant of the family
(3.2.20). However, there is a more efficient (but still randomised) algorithm based on
Theorem 3.2.27. We fix random parameters ν ∈ Pd and, much like in (3.2.18), we define
the incidence

Y◦ν =

{
(x, z) ∈ XF :

νi

xi
+ ν0

∂i f (x, z)
f (x, z)

= 0, i = 1, . . . , d
}

. (3.2.29)

The closure in Pd × Z is denoted by Yν. The number of critical points of (3.2.24) drops
when a solution is contained in the boundary Yν \ Y◦ν . Hence, the Euler discriminant is
contained in the projection πZ(Yν \ Y◦ν ) = πZ(Yν ∩ V(F)). This is strictly contained in Z.

Proposition 3.2.32. Let XF be the family from (3.2.20), with Z ⊆ Pm any irreducible quasi-
projective variety. Let Y◦ν be as in (3.2.29), where ν ∈ Pd is generic. The variety Yν ∩ V(F) has
dimension at most dim Z− 1. Hence, πZ(Yν ∩ V(F)) ⊊ Z is a strict containment.

Proof. The proof is similar to that of Proposition 3.2.21. In this case, the incidence is

Y◦ =

{
(x, z, ν) ∈ XF ×Pd

ν :
νi

xi
+ ν0

∂i f (x, z)
f (x, z)

= 0, i = 1, . . . , d
}

. (3.2.30)

It is again parametrised by XF, and hence irreducible of dimension d + dim Z.

Algorithm 6 is based on ideas similar to those in Section 3.2.3. Components in πZ(Yν ∩
V(F)) which depend on ν are eliminated by performing the computation dim Z + 1 times,
and adding up the ideals. Importantly, in practice we observe that this repeated compu-
tation is not needed. This suggests that the projection of Y◦ ∩ (V(F)×Pd

ν) ⊂ Pd
x × Z×Pd

ν

to Z × Pd
ν only has components of the form V × Pd

ν or Z ×W. Here Y◦ is as in (3.2.30).
The components of the form V × Pd

ν contribute to the Euler discriminant. Among the
components of the form Z×W there are the hyperplanes identified in [SvdV23].

Example 3.2.33. Our Julia implementation of Algorithm 6 is used as in Algorithm 3 to
compute an Euler stratification of X ∗f , with f the ternary quadric from (3.2.1). As predicted
by (3.2.5), there are seven closed strata of dimension four. Among the deeper strata, there
are 21 of dimension three, 27 of dimension two, and 15 of dimension one. The latter consist
of twelve lines

⟨z5, z2, z1, z0⟩, ⟨z5, z3, z2, z0⟩, ⟨z5, z4, z2, z0⟩, ⟨z3, z2, z1, z0⟩, ⟨z4, z3, z2, z0⟩, ⟨z4, z3, z1, z0⟩,
⟨z5, z3, z1, z0⟩, ⟨z5, z4, z1, z0⟩, ⟨z5, z4, z3, z0⟩, ⟨z5, z3, z2, z1⟩, ⟨z5, z4, z3, z2⟩, ⟨z5, z4, z3, z1⟩,

and three quadric curves: ⟨4z3z5− z2
4, z2, z1, z0⟩, ⟨4z0z5− z2

2, z4, z3, z1⟩, ⟨4z0z3− z2
1, z5, z4, z2⟩.

♢
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Table 3.1: Degrees of generators for the ideal of coincident root loci of a binary octic.

λ generators of I(∇λ) λ generators of I(∇λ)

(8) 228

(7,1) 215 (4,4) 374

(6,1,1) 26, 31 (3,1,1,1,1,1) 61, 76, 86

(6,2) 26, 31, 446 (3,2,1,1,1) 61, 76, 86, 1046

(5,1,1,1) 21, 36, 46 (3,2,2,1) 61, 76, 8546

(5,2,1) 21, 36, 46, 654 (3,3,1,1) 584

(5,3) 21, 319, 464 (3,3,2) 41, 5166, 6100

(4,1,1,1,1) 45, 59, 61 (2,1,1,1,1,1,1) 141

(4,2,1,1) 46, 59, 61, 854 (2,2,1,1,1,1) 1119

(4,2,2) 415, 5221 (2,2,2,1,1) 8120

(4,3,1) 445 (2,2,2,2) 5286

3.2.5. Applications
In the following subsections we present several case studies and applications of Euler
stratifications. We compute the full stratification of binary octics in Subsection 3.2.6 (n = 8
in (3.2.10)). In Subsection 3.2.7, we recall the relation between the Euler stratification
of bilinear forms and the matroid stratification of the Grassmannian. Subsection 3.2.8
discusses applications in physics, while Subsection 3.2.9 focusses on statistics, tying back
to the guiding topic of this chapter, Problem 3.0.1. Finally, in Subsection 3.2.10, we stratify
hyperplane sections of Hirzebruch surfaces. Our code uses the packages Oscar.jl (v1.0.4)
[OSC24] and HomotopyContinuation.jl (v2.9.4) [BT18] and is presented at [TW24b].

3.2.6. Binary octics
We come back to binary forms and their coincident root loci as discussed in Section 3.2.2.
Our goal is to compute the full Euler stratification for a binary octic (n = 8). According
to Theorem 3.2.13, this requires the computation of ideals I(∇λ) of coincident root loci for
partitions λ of up to eight. By Theorem 3.2.14, the Euler stratification of eight points in C∗

is easily deduced from the same ideals. We describe our method of computing I(∇λ).
First, we compute the degrees of a minimal generating set of I(∇λ). In [LS16, Tbl. 1],

these numbers are reported for partitions of up to seven. We extend this table to the case
λ ⊢ 8 using finite field computations, see Table 3.1. Here, the entry for λ = (22, 14) is
conjectural; the finite field computation did not terminate within seven days. Using the
parametrisation of ∇λ given by (3.2.12), we sample points on ∇λ and interpolate with
polynomials of the computed degrees using linear algebra over Q. For this, we exploit the
homogeneity of I(∇λ) with respect to the bigrading given by the exponent matrix(

8 7 . . . 1 0
0 1 . . . 7 8

)
.

That grading is obtained from the C∗-action on the space of binary octics P8. It divides the
set of degree d monomials in C[z0, . . . , z8] into 8d + 1 many buckets of monomials with the
same bidegree. The resulting linear system that needs to be solved becomes substantially
smaller. For example, the maximal number of monomials of degree eleven in one bucket
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is 2430, compared to 75582 monomials overall. The implementation as well as a database
with all ideals for the Euler stratification of a binary octic in C∗ can be found at [TW24b].

3.2.7. Matroid stratification of bilinear forms
We start with very affine hypersurfaces defined by bilinear forms. For d1, d2 ≥ 1, consider

f (x, y, z) =
d1

∑
i=0

d2

∑
j=0

zij xi yj. (3.2.31)

The parameter space Z = P(d1+1)(d2+1)−1 is that of (d1 + 1)× (d2 + 1) matrices z = (zij)i,j.
Since f is bilinear, it is natural to consider its zero locus in the torus of Pd1 ×Pd2 . In this
subsection, we set (C∗)d1+d2 ∼= T ⊂ Pd1 ×Pd2 , and we consider the following family:

X ∗f = {(x, y, z) ∈ T × Z : f (x, y, z) ̸= 0}.

The fibres X ∗f ,z of X ∗f → Z represent independence models in algebraic statistics. Their
Euler characteristic was studied in [CHKO24]. One of the main results [CHKO24, Thm.
1.3] states that for any z ∈ Z, the signed Euler characteristic (−1)d1+d2 · χ(X ∗f ,z) equals the
Möbius invariant of the rank-(d1 + 1) matroid represented by the (d1 + 1)× (d1 + d2 + 2)
matrix [Idd1+1 z].

A corollary is that an Euler stratification of X ∗f → Z is induced by the matroid strati-
fication of the Grassmannian Gr(d1 + 1, d1 + d2 + 2). In particular, the Euler discriminant
is the union of all hypersurfaces defined by the (d1 + 1)× (d1 + 1) minors of [Idd1+1 z].
Equivalently, these are the hypersurfaces defined by all minors of the matrix z.

If z ∈ R(d1+1)×(d2+1) has real entries, then the Möbius invariant (−1)d1+d2 · χ(X ∗f ,z)

equals the number of bounded cells in the following hyperplane arrangement complement:{
t ∈ Rd1 : t1 · · · td1

(
z00 +

d1

∑
i=1

zi0ti

)
· · ·
(

z0d2 +
d1

∑
i=1

zid2 ti

)
̸= 0

}
.

Example 3.2.34. For d1 = 2, d2 = 1, the polynomial f and the matrix [Idd1+1 z] are

f = z00 x0y0 + z10 x1y0 + z20 x2y0
+ z01 x0y1 + z11 x1y1 + z21 x2y1,

[Idd1+1 z] =

1 0 0 z00 z01
0 1 0 z10 z11
0 0 1 z20 z21

 .

For generic choices of zij ∈ R, the lines {z0i + z1it1 + z2it2 = 0}, i = 0, 1, together with
{t1 = 0} and {t2 = 0}, define three bounded cells in R2. The Euler discriminant of X ∗f
vanishes when at least one of these cells collapses and is the product of the minors of z:

∆χ = z00z10z20z01z11z21(z00z11 − z01z10)(z00z21 − z01z20)(z10z21 − z11z20). ♢

3.2.8. Feynman integrals
Let X ∗f be the family of very affine hypersurfaces from (3.2.20). In particle physics, the
signed Euler characteristic of the fibre X ∗f ,z counts the number of master integrals [BBKP19].
These are (regularised) Feynman integrals which form a basis for the twisted cohomology of
X ∗f ,z with respect to the dlog form (3.2.24), see [BBKP19, MM19]. We consider Feynman
integrals in parametric representation [Wei22, §2.5.4]. In that context, the polynomial f is
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Figure 3.6: Three Feynman diagrams: bubble, sunrise and parachute.

the graph polynomial associated to a Feynman graph. The variables x are the integration
variables, called Schwinger parameters, and the parameters z are kinematic data, such as
momenta and masses of fundamental particles. The theory of twisted cohomology extends
to the more general class of Euler integrals studied in [AFST24, MHMT23], where f can be
any polynomial. Feynman graphs also appear in Section 5.2 in a combinatorial context.

Since x is integrated out, a Feynman integral represents a multivalued function of z.
The goal of Landau analysis is to detect branch and pole loci of this multivalued function
[MT22]. By [Bro09, Thm. 56], these loci are contained in the union of codimension-one
strata in a Whitney stratification of X ∗f → Z. Brown defines the Landau variety as this union
[Bro09, Def. 54]. Algorithms for computing the Landau variety can be found in [HPT24,
Pan15]. The paper [FMT24] conjectures that the branch and pole loci are detected by a drop
in the number of master integrals, i.e. by the Euler discriminant of the family X ∗f → Z.
However, no algorithm for computing the Euler discriminant is presented in [FMT24].
Instead, an approximation of∇χ is computed, called the principal Landau determinant, using
efficient techniques from numerical algebraic geometry inspired by [MT22]. Here, we use
Algorithm 6 to compute the Euler discriminant of several Feynman integrals, including
some appearing in [HPT24]. In all examples we checked, the Euler discriminant coincides
with Brown’s Landau variety. In future work, we aspire to develop numerical versions of
our algorithms to tackle more challenging diagrams.

Example 3.2.35. We start with the bubble graph (Figure 3.6(a)), with graph polynomial

f = (x0 −m1x1 −m2x2)(x1 + x2) + s x1x2.

The variety X ∗f ⊂ P2 × Z is a family of curve complements over Z = C3, where Z has
coordinates (m1, m2, s). The parameters represent the squared masses mi of particles trav-
elling along the internal edges of the diagram, and the Mandelstam invariant s depending
on momenta of external particles. Algorithm 3 computes the following strata:

codim 1 : ⟨m1⟩, ⟨m2⟩, ⟨s⟩, ⟨m2
1 − 2m1m2 − 2m1s + m2

2 − 2m2s + s2⟩
codim 2 : ⟨m2 − s, m1⟩, ⟨s, m1⟩, ⟨m2, m1⟩, ⟨s, m1 −m2⟩, ⟨m2, m1 − s⟩, ⟨s, m2⟩
codim 3 : ⟨m1, m2, s⟩

This Euler stratification agrees with the Whitney stratification in [HPT24, Sec. V, §A]. ♢

Example 3.2.36. Next, we consider the sunrise graph, shown in part (b) of Figure 3.6. The
(homogenised) graph polynomial f defines a family of surface complements over Z = C4:

f = (x0 −m1x1 −m2x2 −m3x3)(x1x2 + x1x3 + x2x3) + s x1x2x3.
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The Euler discriminant agrees with the principal Landau determinant in [FMT24, Ex. 3.7]:

∆χ = m1 ·m2 ·m3 · s · (m4
1 − 4m3

1m2 − 4m3
1m3 − 4m3

1s + 6m2
1m2

2 + 4m2
1m2m3

+ 4m2
1m2s + 6m2

1m2
3 + 4m2

1m3s + 6m2
1s2 − 4m1m3

2 + 4m1m2
2m3 + 4m1m2

2s
+4m1m2m2

3 − 40m1m2m3s + 4m1m2s2 − 4m1m3
3 + 4m1m2

3s + 4m1m3s2

− 4m1s3 + m4
2 − 4m3

2m3 − 4m3
2s + 6m2

2m2
3 + 4m2

2m3s + 6m2
2s2 − 4m2m3

3
+ 4m2m2

3s + 4m2m3s2 − 4m2s3 + m4
3 − 4m3

3s + 6m2
3s2 − 4m3s3 + s4).

♢

Example 3.2.37. The graph polynomial of the parachute diagram (Figure 3.6(c)) reads

f = (x0 −
4

∑
i=1

mixi) · ((x1 + x2)(x3 + x4) + x1x2) + x1x2(M1x3 + M2x4) + M3x3x4(x1 + x2),

where Mi is the squared mass of the i-th external particle. With the specialisation m1 =
1, m4 = 2, M1 = −1 and all other parameters except M3 equal to zero, we compute that
the Euler discriminant agrees with the Landau variety in [HPT24, Sec. V, §C]:

∆χ = M3(M3 − 1)(M3 + 1)(M3 − 2)(M3 + 2).

In particular, the Euler discriminant contains the components which are missing in the
principal Landau determinant, see [FMT24, Eq. (3.18)]. These components lie on a compo-
nent of the Landau variety identified in [BP22, Eq. (6.15)]. ♢

3.2.9. Maximum likelihood estimation for toric models
Recall from Section 2.2 that in algebraic statistics, a log-affine model with m possible out-
comes is represented by a scaled projective toric variety XA,z ⊆ Pm−1. By Theorem 2.2.12,
the maximum likelihood degree of XA,z is given by the signed Euler characteristic of
the very affine variety XA,z \ H, where H is the distinguished hyperplane arrangement
H = {p1 . . . pm(p1 + · · ·+ pm) = 0}. Here, pi are the coordinates of Pm−1. We now explain
how the dependence of MLdeg(XA,z) on z is governed by Euler stratifications.

Let A be an integer matrix of size d× m corresponding to XA,z, i.e. XA,z is the image
closure of the monomial map ϕA,z : (C∗)d → Pm−1, x 7→ (z1xa1 : · · · : zmxam) as in Def-
inition 2.1.1 (although we do allow some, but not all, zi to be zero). Moreover, without
loss of generality as per Proposition 2.1.3, assume that ϕA,z is one-to-one. Let f be the
polynomial f = ∑m

i=1 zixai as in (3.2.21). Then the restriction of ϕA,z to X ∗f ,z gives an iso-
morphism of very affine varieties X ∗f ,z

∼= XA,z \ H. Concordantly, the Euler stratification
of X ∗f → Pm−1 from (3.2.20) completely describes the dependence of the ML degree of the
discrete exponential family on the model parameters z.

The description of the ML degree as the Euler characteristic of a very affine variety
also plays a crucial role for the study of the parametric ML degree from the perspective of
hypersurface arrangements. See Subsection 3.3.2 for a treatment from that point of view.

We can also take the following perspective: the map ϕA,z identifies (X ∗f ,z)
c ⊂ (C∗)d with

the hyperplane section Hz ∩ im ϕA,z ⊂ Hz ∩ XA,z, where Hz = V(z1 p1 + · · ·+ zm pm). Since
χ(X ∗f ,z) = −χ((X ∗f ,z)

c), we are stratifying (Pm−1)∨ according to the Euler characteristic of
Hz intersected with the dense torus of XA,z.

Example 3.2.38. Following [AKK20, AO24], we consider matrices A whose columns are
lattice points of reflexive polygons, meaning that the dual of these polygons are again
lattice polygons. The corresponding toric surfaces are the Gorenstein toric Fano surfaces,
of which there exist 16 isomorphism classes [AKK20, Fig. 1], i.e. there are 16 reflexive
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Figure 3.7: Euler stratifications for hyperplane sections of five toric Fano surfaces.

polygons up to unimodular transformation. Algorithm 3 computes the Euler stratification
for the first five of these using Algorithm 6 for the Euler discriminant. These are the
polygons appearing in [AKK20, Tbl. 2]. The results are summarised in Figure 3.7. The
figure contains the polygons, the corresponding A-matrices, and a list of closed, irreducible
strata in Pm. The notation for a closed stratum S is (dim S, deg S, χ(X ∗f ,z))

e, where z ∈ S is
a generic point on the stratum and the exponent e counts the number of strata of that type.
The generators for the defining ideal of each stratum and the code for reproducing these
numbers can be found online at [TW24b]. Our results can be used to compute the ML
degree drop from [AO24, Def. 2.7] for any member of the respective model families. ♢

3.2.10. Hirzebruch surfaces

A Hirzebruch surface is a toric surface XA ⊂ Pn0+n1+1 obtained from a matrix of the form

A =

n1 + 1 n1 · · · n1 − n0 + 1 n1 n1 − 1 · · · 0
0 1 · · · n0 0 1 · · · n1
0 0 · · · 0 1 1 · · · 1

 ,

where n0 ≤ n1 are positive integers. As explained in Subsection 3.2.9, a hyperplane section
Hz ∩ im ϕA is isomorphic to a curve in the torus (C∗)2 ∼= T ⊂ P2. That curve is defined by

f = z00xn1+1
0 + z10xn1

0 x1 + · · ·+ zn00xn1−n0+1
0 xn0

1 + z01xn1
0 x2 + z11xn1−1

0 x1x2 + · · ·+ zn11xn1
1 x2.

This gives rise to a family of curves X c
f ⊂ T × Pn0+n1+1. The following Lemma already

appeared as [ABB+19, Thm. 17]. Here, we give a geometric proof of the statement.

Lemma 3.2.39. Let f be as above. For any z ∈ Pn0+n1+1, the signed Euler characteristic of
(X ∗f ,z)

c = {x ∈ T : f (x; z) = 0} equals the number of roots t ∈ C∗ of

(z00 + z10t + z20t2 + · · ·+ zn00tn0)(z01 + z11t + z21t2 + · · ·+ zn11tn1) = 0. (3.2.32)
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Proof. Fix z ∈ Pn0+n1+1. Let (t1, t2) = (x−1
0 x1, x−1

0 x2) be coordinates on T. The curve
(X ∗f ,z)

c is the zero locus of x−(n1+1)
0 f (x; z) = g0(t1; z) + t2 · g1(t1; z). Here the polynomials

g0, g1 are precisely the factors appearing in Equation (3.2.32). Let π1 : (X ∗f ,z)
c → C∗ be

the projection to the t1-coordinate. Let U ⊂ C∗ be the open subset of points t1 satisfying
g0(t1; z)g1(t1; z) ̸= 0. The restriction of π1 to π−1

1 (U) is a fibration whose fibres consist of
a single point. The complement C∗ \U is a disjoint union U0 ⊔U1 ⊔U01, where

U0 = {t1 ∈ C∗ : g0(t1; z) = 0, g1(t1; z) ̸= 0},
U1 = {t1 ∈ C∗ : g0(t1; z) ̸= 0, g1(t1; z) = 0},

U01 = {t1 ∈ C∗ : g0(t1; z) = g1(t1; z) = 0}.

The fibre of πx over any point of U0 ⊔U1 is empty, and the fibre over any point of U01 is
C∗. Using the excision property and multiplicativity along fibrations of χ(·), we obtain

χ((X ∗f ,z)
c) = χ(U) · χ({pt}) + χ(U0) · χ(∅) + χ(U1) · χ(∅) + χ(U01) · χ(C∗) = χ(U).

Using excision once more we see that

χ((X ∗f ,z)
c) = −χ({t1 ∈ C∗ : g0(t1; z)g1(t1; z) = 0}).

Lemma 3.2.39 reduces the Euler stratification of X ∗f to the case d = 1 as in Section 3.2.2.

Theorem 3.2.40. Let π f : X ∗f → Pn0+n1+1 be a family of curves with f as above. There exists an
Euler stratification of π f with ∑n0+n1

i=0 (n0 + n1 + 1− i)P(i) + 1 many strata, where P(i) is the
number of partitions of i. All but one of these strata correspond bijectively to the strata in the Euler
stratification of Pn0+n1 induced by a univariate polynomial of degree n0 + n1 on C∗.

Proof. Consider the surjective morphism ρ : Pn0+n1+1 \ E→ Pn0+n1 sending the coefficients
of f (x; z) = f0(x0, x1, z) + x2 f1(x0, x1, z) to the coefficients of f0 f1. Here, E is the base locus
E = {z00 = · · · = zn00 = 0} ∪ {z01 = · · · = zn11 = 0}. By Lemma 3.2.39, the preimages
of the Euler strata of f0 f1 in Pn0+n1 under ρ give an Euler stratification of Pn0+n1+1 \ E.
The remaining observation is that the Euler characteristic of X ∗f ,z along the closed set E is
constant and equal to zero. The number of strata is a consequence of Theorem 3.2.14.
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3.3. Arrangements and parametric likelihood
The purpose of this section is twofold: Firstly, we establish connections between hypersur-
face arrangements [Dup15, OT13] and likelihood geometry [HS14]. Thereby arises a new
description, summarised in Theorem 3.3.1, of the prime ideal I(A) of the likelihood corre-
spondence of a parametrised statistical model. The description rests on the Rees algebra
of the likelihood module M(A) of the arrangement A, a module that is closely related to the
module of logarithmic derivations introduced by Saito [Sai80] for a general arrangement.
Our new description is often computationally advantageous compared to previous meth-
ods for computing the ideal I(A) [HKS05]. Secondly, in contrast to most previous work
in algebraic statistics, our perspective considers statistical models parametrically, which is
more natural to many statistical applications. The following is our main result.

Theorem 3.3.1. The quotient R[s]/I(A) is the Rees algebra of the likelihood module M(A).

In Subsection 3.3.1, we start by introducing the likelihood module and other key play-
ers, and then prove Theorem 3.3.1. The nicest scenario arises when the Rees algebra agrees
with the symmetric algebra. In this case, the module is of linear type. We call an arrange-
ment A gentle if the likelihood module M(A) has this property. For gentle arrangements,
the ideal of the likelihood correspondence is easy to compute, and the maximum likeli-
hood degree is determined by M(A). Being gentle is a new concept that is neither implied
nor implies known properties of a nonlinear arrangement A, like being free or tame.

The literature on the ML degree [CHKS06, HKS05] has focused mostly on implicitly
defined models. We here emphasise the parametric description that is more common in
statistics, and also seen for scattering equations in physics [Lam24, ST21]. We develop
these connections in Subsection 3.3.2 and compare implicit and parametric MLE.

In Subsection 3.3.3 we relate gentleness to the familiar notions of free and tame ar-
rangements. Theorem 3.3.19 offers a concise statement. Subsection 3.3.4 considers generic
arrangements, working towards a conjecture that every generic arrangement is gentle. In
Subsection 3.3.5 we turn to the linear case when the hypersurfaces are hyperplanes. We
study the likelihood correspondence for graphic arrangements, that is, subarrangements
of the braid arrangement. The edge graph of the octahedron yields the smallest graphical
arrangement which is not gentle; see Theorem 3.3.38. In Subsection 3.3.6 we present soft-
ware in Macaulay2 [GS02] for computing the likelihood correspondence of A. The code
we develop along with examples is available at the repository [KKM+24b].

3.3.1. Arrangements and modules
Following Section 2.4, let f1, . . . , fm ∈ R = C[x1, . . . , xn] be homogeneous polynomials and
let A = { f1, . . . , fm} denote a hypersurface arrangement in projective space Pn−1.

For any complex vector s = (s1, s2, . . . , sm) ∈ Cm, we consider the likelihood function

f s = f s1
1 f s2

2 · · · f sm
m .

This is known as the master function in the arrangement literature [CDFV11]. Its logarithm

ℓA = s1 log( f1) + s2 log( f2) + · · ·+ sm log( fm)

is the log-likelihood function, similar to (2.2.3). In the context of particle physics, this func-
tion is the scattering potential. After choosing appropriate branches of the logarithm, the
function ℓA is well-defined on the arrangement complement Pn−1 \⋃ fi∈A V( fi).
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For us, it is natural to assume m > n and that the arrangement is essential, i.e. the lowest
dimensional intersections are isolated points. With these hypotheses, the complement
of the arrangement is a very affine variety, see [Huh13], and from now on we assume
this is the case. When the fi are linear forms, one recovers the theory of hyperplane
arrangements. This is included in our setup as an important special case.

In likelihood inference one wishes to maximise ℓA for given s1, . . . , sm, see Section 2.2.
Due to the logarithms, the critical equations ∇ℓA = 0 are not polynomial. Of course, these
rational functions can be made polynomial by clearing denominators. But, multiplying
through with a high degree polynomial is a very bad idea in practice. A key observation in
this section is that the various modules of (log)-derivations that have been considered in the
theory of hyperplane arrangements correctly solve the problem of clearing denominators.

We now define graded modules over the polynomial ring R which are associated to the
arrangement A. To this end, consider the following m× (m + n) matrix

Q =


f1 0 . . . 0 ∂ f1

∂x1
. . . ∂ f1

∂xn

0 f2 . . . 0 ∂ f2
∂x1

. . . ∂ f2
∂xn

...
. . .

...
...

0 0 . . . fm
∂ fm
∂x1

. . . ∂ fm
∂xn

.

 ∈ Rm×(m+n). (3.3.1)

Each vector in the kernel ker(Q) is naturally partitioned as ( a
b ), where a ∈ Rm and b ∈ Rn.

With this partition, let
(

A
B

)
∈ R(m+n)×l be a matrix whose columns generate ker(Q).

We shall distinguish four graded R-modules associated with the arrangement A:

• The Terao module of A = { f1, . . . , fm} is ker(Q). This is a submodule of Rm+n.

• The Jacobian syzygy module J(A) is im(B). This is a submodule of Rn.

• The log-derivation module D(A) is im(A). This is a submodule of Rm.

• The likelihood module M(A) is coker(A). This has m generators and l relations.

The first three modules are isomorphic and are often identified, see Lemma 3.3.3.

Example 3.3.2 (Braid arrangement). Let m = 6, n = 4 and letA be the graphic arrangement
associated with the complete graph K4. Writing x, y, z, w for the variables, we have

Q =



x− y 0 0 0 0 0 1 −1 0 0
0 x− z 0 0 0 0 1 0 −1 0
0 0 x− w 0 0 0 1 0 0 −1
0 0 0 y− z 0 0 0 1 −1 0
0 0 0 0 y− w 0 0 1 0 −1
0 0 0 0 0 z− w 0 0 1 −1

.

The Terao module ker(Q) ⊂ R10 is free. It is generated by the l = 4 rows of the matrix

[
A
B

]T

=


0 0 0 0 0 0 −1 −1 −1 −1
1 1 1 1 1 1 −x −y −z −w

x+y x+z x+w y+z y+w z+w −x2 −y2 −z2 −w2

x2+xy+y2 x2+xz+z2 · · · · · · · · · z2+zw+w2 −x3 −y3 −z3 −w3

.

The Vandermonde matrix in the last four columns represents the syzygies on

∇ f =
[
∂x f , ∂y f , ∂z f , ∂w f

]
,
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where f is the sextic (x − y)(x − z)(x − w)(y − z)(y − w)(z − w). This is the module
J(A) ⊂ R4. The module D(A) ⊂ R6 is free of rank three and generated by the three
nonzero rows of AT. This arrangement A has all the nice features in Subsection 3.3.3. ♢

Recall the definition of the module of logarithmic A-derivations Der(A) (see Defini-
tion 2.4.1). The condition θ( f ) ∈ ⟨ f ⟩ in (2.4.1) ensures that the derivation θ, when applied
to the log-likelihood function ℓA, yields an honest polynomial rather than a rational func-
tion with fi in the denominators. This is expressed in Theorem 3.3.12 via an injective
R-module homomorphism Der(A)→ R[s1, . . . , sm] which evaluates θ on ℓA.

Using modules instead of ideals one can store more refined information, namely how
each θ ∈ Der(A) acts on the individual factors fi or their logarithms. While at first it
might seem natural to store elements of Der(A) as coefficient vectors in Rn, it is more
efficient to store their values on the fi. This yields the log-derivation module D(A). This
representation has been used in computer algebra systems like Macaulay2, together with
the matrix M from above. In the likelihood context, it appears in [HKS05, Alg. 18].

Lemma 3.3.3. Let A be an arrangement in Pn−1, defined by coprime polynomials f1, . . . , fm.

1. The Terao module, the Jacobian syzygy module J(A), the log-derivation module D(A), and
the module of logarithmic A-derivations Der(A) are all isomorphic as R-modules.

2. We have J(A) ∼= J0(A)⊕ RθE, where the second direct summand is the free rank 1 module

spanned by the Euler derivation θE = ∑n
i=1 xi∂xi , and J0(A) = ker(Rn ∇ f−→ R).

3. The four modules above are isomorphic to the first syzygy module of the likelihood module. In
particular, pd(M(A)) = pd(D(A)) + 1 holds for their projective dimensions.

Proof. The isomorphisms exist because the condition θ( f ) ∈ ⟨ f ⟩ is equivalent to the simul-
taneous conditions θ( fi) ∈ ⟨ fi ⟩ for i = 1, . . . , m. Here we use that f1, . . . , fm are coprime.
Item 2 follows directly from the first item in Proposition 2.4.3. For item 3 we consider free
resolutions over the ring R. Let A ∈ Rm×l be the matrix whose image equals D(A). A free
resolution of coker(A) uses A as the map F0 ← F1, i.e.

0 ← M(A) ← Rm A←− Rl A2←− F2 ← · · ·

The image of A is a submodule of Rm, and its free resolution looks like this:

0 ← D(A) A←− Rl A2←− F2 ← F3 ← · · ·

The module Rl sits in homological degree zero in the resolution of im(A) = D(A), and it
sits in homological degree one in the resolution of coker(A) = M(A). The two resolutions
agree from the map A on to the right, but the homological degree is shifted by one.

Having introduced the various modules for an arrangement A, we now turn our at-
tention to likelihood geometry. This concerns the critical equations ∇ℓA = 0 of the log-
likelihood function. To capture the situation for all possible data values si, we define the
parametric likelihood correspondence below. This definition should be contrasted with
the implicitly defined likelihood correspondence in Definition 2.2.9.

Definition 3.3.4. The (parametric) likelihood correspondence LA is the Zariski closure of{
(x, s) ∈ Cn ×Cm :

∂ℓA
∂xi

(x, s) = 0, i = 1, . . . , n, f s(x) ̸= 0, F(x) ∈ Xreg

}
⊂ Pn−1 ×Pm−1,

where X is the Zariski closure of the image of F : Cn → Cm, x 7→ ( f1(x), . . . , fm(x)), and
Xreg is its set of nonsingular points. The likelihood ideal I(A) is the vanishing ideal of LA.
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The likelihood correspondence is a key player in algebraic statistics [BCF23, HS14].
For example, the ML degree (see Definition 3.3.13) can be read off from its multidegree.
Analogously to the implicit likelihood correspondence, we have the following result.

Lemma 3.3.5. The likelihood ideal I(A) is prime and LA is an irreducible variety.

Proof. For each fixed vector x ∈ Cn, the likelihood equations are linear in the s-variables.
The locus where this linear system has the maximal rank is Zariski open and dense in Cn.
By our assumption m > n, the variety LA is therefore a vector bundle of rank m− n. In
particular, LA is irreducible, and its radical ideal I(A) is prime.

The second ingredient of Theorem 3.3.1 is the Rees algebra of the likelihood module.
Recall the construction of R(M(A)) from Definition 2.3.1.

Definition 3.3.6. Let A be an arrangement and M(A) = coker(A) its likelihood module.
We call I0(A) = ⟨ (s1, . . . , sm) · A ⟩ the pre-likelihood ideal of A. This is the ideal shown in
(2.3.1), presenting the symmetric algebra of M(A). Let I be the kernel of the composition

R[s1, . . . , sm] → Sym(M(A)) → R(M(A)). (3.3.2)

Thus, I is an ideal in the ring on the left containing the pre-likelihood ideal I0(A). We refer
to I as the Rees ideal of the module M(A) because it presents the Rees algebra of M(A).

Theorem 3.3.1 states that the Rees ideal of M(A) equals the likelihood ideal, I = I(A).
This will be proved below. The ambient polynomial ring R[s] = C[x1, . . . , xn, s1, . . . , sm] is
bigraded via deg(xi) =

(
1
0

)
for i = 1, . . . , n and deg(si) =

(
0
1

)
for i = 1, . . . , m. The Rees

ideal can be computed with general methods in Macaulay2. See [Eis18] for a computa-
tional introduction. The output of these methods differ from ours as these tools usually
work with minimal presentations of modules, thereby reducing the number of variables si.
For us, it makes sense to preserve symmetry and accept non-minimal presentations.

The case where the likelihood module is of linear type is of particular interest to us, as
then the computation of the likelihood ideal I(A) is very simple.

Definition 3.3.7. An arrangement A is gentle if its likelihood module is of linear type, i.e. if
its likelihood ideal I(A) equals the pre-likelihood ideal I0(A). This happens if and only if
the map on the right in (3.3.2) is an isomorphism, in which case Sym(M(A)) = R(M(A)).
Example 3.3.8. The graphic arrangement of K4 is gentle. Fix the matrix A from Exam-
ple 3.3.2. The pre-likelihood ideal has three generators, one for each nonzero column of A:

I0(A) =
〈
[s12, s13, s14, s23, s24, s34] · A

〉
⊂ R[s12, s13, s14, s23, s24, s34]. (3.3.3)

One generator is ∑ij sij. The other two generators have bidegrees
(

1
1

)
and

(
2
1

)
. Using

Macaulay2, we find that the pre-likelihood ideal I0(A) is prime. Hence, by Proposi-
tion 3.3.10, I0(A) equals the Rees ideal of M(A), which is the likelihood ideal I(A). It
defines a complete intersection in P3×P5. This is the likelihood correspondence LA. ♢

Example 3.3.9 (n = 3, m = 4). The arrangement A = {x, y, z, x3 + y3 + xyz} is not gentle.
It consists of the three coordinate lines and one cubic in P2. Its pre-likelihood ideal equals

I0(A) =
〈

s1 + s2 + s3 + 3s4, xz · s2 − (3y2 + xz) · s3, yz · s2 + (3x2 + 2yz) · s3 + 3yz · s4,
(x3 + y3) · s2 + (3y3 + xyz) · s3 + (3y3 + xyz) · s4

〉
.

This ideal is radical but it is not prime. Its prime decomposition equals

I0(A) =
(

I0(A) + ⟨x, y⟩
)
∩ I(A), where I(A) = I0(A) + ⟨ q ⟩

and q = z2 · s2
2 + z2 · s2s3 + 9xy · s2

3 − 2z2 · s2
3 + 3z2 · s2s4 − 3z2 · s3s4.

The extra generator q of the likelihood ideal is quadratic in the data variables s. ♢
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For hyperplane arrangements, our ideals were introduced by Cohen et al. [CDFV11]
who called them the logarithmic ideal and the meromorphic ideal, respectively. In spirit of
Terao’s freeness conjecture, one can ask whether gentleness is combinatorial, i.e. can the
matroid decide whether an arrangement is gentle? Since all line arrangements in P2 are
gentle (Theorem 3.3.19), a counterexample would need to have rank at least four.

Our technique for computing likelihood ideals of arrangements rests on the following
result. It transforms the pre-likelihood ideal I0 into the Rees ideal I via saturation.

Proposition 3.3.10. Let p be an element in R such that M(A)[p−1] is a free R[p−1]-module. Then
the likelihood ideal of the arrangement A is the saturation I(A) = (I0(A) : p∞). In particular,
the arrangement A is gentle if and only if its pre-likelihood ideal I0(A) is prime.

Proof. The proof of the statement about p uses the fact that the Rees algebra construction
commutes with localisation (Proposition 2.3.3). The likelihood ideal I(A) is always prime,
since the Rees algebra is a domain by Proposition 2.3.2. Thus, if I0(A) is not prime, then
it is not the likelihood ideal and the arrangement A is not gentle. If I0(A) is prime, then
picking any suitable p in the first part shows that it is the likelihood ideal.

Remark 3.3.11. The existence of an element p as in Proposition 3.3.10 is guaranteed by
generic freeness. In our case, we can take p as the product of the fi and all maximal
nonzero minors of the Jacobian matrix of F = ( f1, . . . , fm). This follows from the con-
struction of the likelihood correspondence. There, F(x) ∈ Xreg is required, but the proof
of Lemma 3.3.5 requires only that the Jacobian of F has maximal rank. We can replace
F(x) ∈ Xreg by this latter condition without changing the closure. Computing the satu-
ration tends to be a horrible computation. For practical purposes, it usually suffices to
saturate I0 at just a few of these polynomials and checking primality after each step. In
Example 3.3.9, we can take p to be any element in the ideal ⟨x, y⟩ for the singular locus of
the cubic x3 + y3 + xyz.

Proof of Theorem 3.3.1. Let I be the prime likelihood ideal and I0 the pre-likelihood ideal
of an arrangement A. Since the generators of I0 vanish on the likelihood correspondence
LA, we have I0 ⊆ I. Let I′ be the Rees ideal of the likelihood module M(A). Clearly, also
I0 ⊆ I′ and I′ is prime by Proposition 2.3.2. Let p be an element as in Proposition 3.3.10,
then I′ = I0 : p∞ ⊆ I : p∞. Since p ∈ R does not contain any s variables, p /∈ I. Hence,
I : p∞ = I and thus I′ ⊆ I. Conversely, also I = I0 : f where f equals a sufficiently
high power of the product of the polynomials cutting out the singular locus of X and
the forms fi, another polynomial that is s-free and no such polynomial vanishes on LA.
Hence, also I = I0 : f ⊆ I′ : f = I′ and thus I = I′.

We conclude this subsection with a result directly linking arrangements and likelihood.

Theorem 3.3.12. The evaluation of A-derivations at the log-likelihood function

Der(A)→ I(A) ⊂ R[s], θ 7→ θ(ℓA)

is an injective R-linear map onto I0(A). It is an isomorphism if and only if A is gentle.

Proof. Any derivation θ maps ℓA to a rational function in C[s](x). The image is a polyno-
mial in C[s, x] if and only if θ ∈ Der(A). The isomorphism between Der(A) and D(A)
in Lemma 3.3.3 ensures that the map is injective, and that these polynomials generate the
ideal I0(A). If A is gentle, I0(A) = I(A) and the map is an isomorphism.
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3.3.2. Parametric likelihood in statistics and physics
Our study of hypersurface arrangements offers new tools for statistics and physics. We
now explain this point and the relation to implicit likelihood as explained in Section 2.2.
Let A be an arrangement given by homogeneous polynomials f1, . . . , fm ∈ R[x1, . . . , xn]
of the same degree. The unknowns x1, . . . , xn are model parameters and the polynomials
f1, . . . , fm represent probabilities. Let X denote the Zariski closure of the image of the map

F : Cn 99K Pm−1, x 7→
(

f1(x) : f2(x) : · · · : fm(x)
)
.

The algebraic variety X represents a statistical model for discrete random variables. Our
model has m states. The parameter region consists of the points in Rn where all fi are
positive. On that region, the rational function fi / ∑n

j=1 f j is the probability of observing
the ith state. In other words, the statistical model is given by the intersection of X with the
probability simplex ∆◦m−1 in Pm−1. Here, the fi are rarely linear, and the si are nonnegative
integers which summarise the data. Namely, si is the number of samples that are in state i.

In statistics, one maximises the log-likelihood function ℓA over all points x of the pa-
rameter region. Here, the si are given numbers and one considers the critical equations
∇ℓA = 0. This is a system of rational function equations. Any algebraic approach will
transform these into polynomial equations. Naı̈ve clearing of denominators does not work
because it introduces too many spurious solutions. The key challenge is to clear denom-
inators in a manner that is both efficient and mathematically sound. That challenge is
precisely the point of this section.

A key notion in likelihood geometry is the ML degree (Definition 2.2.8), counting crit-
ical points of the likelihood function. We introduce a notion of this in our parametric
arrangement setup. The likelihood correspondence LA lives inside Pn−1 ×Pm−1. Its class
in the Chow ring A(Pn−1 ×Pm−1) ∼= Z[p, u]/⟨pn, um⟩ is a binary form

[LA] = cd pd + cd−1 pd−1u + cd−2 pd−2u2 + · · · + c1 pud−1 + c0ud, (3.3.4)

where d = codim(LA). This agrees with the multidegree of I(A) as in [MS05, Part II, §8.5].

Definition 3.3.13. The (parametric) maximum likelihood (ML) degree MLdeg(A) of the ar-
rangement A is the leading coefficient of [LA], i.e. it equals ci where i is the largest index
such that ci > 0 in (3.3.4).

If cd > 0 then MLdeg(A) = cd and Definition 3.3.13 gives a critical point count.

Proposition 3.3.14. If MLdeg(A) = cd then the set{
x ∈ Pn−1 : ∇ℓA(x, s) = 0, f s(x) ̸= 0, F(x) ∈ Xreg

}
, (3.3.5)

is finite for generic choices of s. Its cardinality equals MLdeg(A) and does not depend on s.

Proof. Under the assumption cd > 0, the projection π : LA → Pm−1 is finite-to-one. A
general fibre has cardinality cd and is described by (3.3.5).

Remark 3.3.15. The above setup differs from the one common to algebraic statistics and
described in Section 2.2 in several aspects: First, “generic choices of s” means generic in
a subspace of Cm. This is usually {s : ∑m

i=1 disi = 0}. Second, Proposition 3.3.14 gives a
parametric version of the ML degree, whereas Definition 2.2.8 defines the ML degree im-
plicitly. Moreover, in Definition 2.2.8, the hypersurface defined by ∑m

i=1 fi is added to the
arrangement. Only this modification allows the interpretation of A as a statistical model,
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as described in the paragraph above. If this hypersurface is included in A and we assume
that the parametrisation is finite-to-one, then our parametric ML degree is an integer mul-
tiple of the implicit ML degree. Under these assumptions, there is a flat morphism from
the parametric to the implicit likelihood correspondence in Definition 2.2.9. The induced
map on Chow rings is injective, and the claim follows. Our definition via the multide-
gree of LA allows for a sensible notion even in the case where the parametrisation is not
finite-to-one. This appears for example in the formulation of toric models given below.

For illustration, we revisit the coin model from the introduction of [HKS05].

Example 3.3.16. A gambler has two biased coins, one in each sleeve, with unknown bi-
ases t2, t3. They select one of them at random, with probabilities t1 and 1− t1, toss that
coin four times, and record the number of times heads comes up. If pi is the probability of
i− 1 appearances of heads then

p1 = t1 · (1− t2)4 + (1− t1) · (1− t3)4,
p2 = 4t1 · t2(1− t2)3 + 4(1− t1) · t3(1− t3)3,
p3 = 6t1 · t2

2(1− t2)2 + 6(1− t1) · t2
3(1− t3)2,

p4 = 4t1 · t3
2(1− t2) + 4(1− t1) · t3

3(1− t3),
p5 = t1 · t4

2 + (1− t1) · t4
3.

(3.3.6)

We homogenise these equations by setting tj = xj/x4 for j ∈ {1, 2, 3}. Let fi(x) be the
numerator of pi(t) after this substitution. This is a homogeneous polynomial in four
variables of degree di = 5. We finally set f6(x) = x4 and d6 = 1. If we now take s6 =
−d1s1 − d2s2 − · · · − d5s5, then we are in the setting of Subsection 3.3.1. Namely, we have
an arrangement A of m = 6 surfaces in P3.

We observe N iterations of this game and record the outcomes in the data vector
(s1, s2, s3, s4, s5) ∈N5, where si is the number of trials with i− 1 heads. Hence, ∑5

i=1 si = N.
Our assignment s6 = −5N ensures that d1s1 + · · ·+ d6s6 lies in I0(A). The task in statis-
tics is to infer the unknown parameters t1, t2 and t3 from the data s1, . . . , s5. The ML
degree of this model is 24. Indeed, the equations ∇ℓA(x, s) = 0 have 24 complex solu-
tions x = (t, 1) ∈ P4 for random data s1, s2, s3, s4, s5, provided t1(1− t1)(t2 − t3) ̸= 0. In
[HKS05] it is reported that the ML degree for this model is 12. The discrepancy of a factor
two arises because of the two-to-one parametrisation (3.3.6).

In summary, our projective formulation realises the coin model as an arrangement A
in P3 with n = 4, m = 6, and d1 = · · · = d5 = 5 and d6 = 1. The quintics f1, f2, f3, f4, f5
have 13, 12, 9, 6, 3 terms respectively. For instance, the homogenisation of p4(t) yields

f4(x) = 4(−x1x4
2 + x1x4

3 + x1x3
2x4 − x1x3

3x4 − x4
3x4 + x3

3x2
4).

The pre-likelihood ideal I0(A) has six generators of bidegrees
(

0
1

)
,
(

2
1

)
,
(

10
1

)
, and

(
13
1

)
thrice. The first ideal generator is 5(s1 + s2 + s3 + s4 + s5) + s6, and the second generator is

4s6(x1x2 − x1x3 + x3x4) + 5(s2 + 2s3 + 3s4 + 4s5)x2
4. ♢

We now turn to the two-parameter models seen in the Introduction of [CHKS06].

Example 3.3.17. Let n = 3, m = 5, d1 = d2 = d3 = d4 = 2, and d5 = 1. This gives
arrangements of four conics and the line at infinity in P2. One very special case is the
independence model for two binary random variables, in a homogeneous formulation:

f1 = x1x2, f2 = (x3 − x1)x2, f3 = x1(x3 − x2), f4 = (x3 − x1)(x3 − x2), f5 = x3.
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The arrangement is tame and free (see Subsection 3.3.3), but not gentle; the pre-likelihood
ideal has a prime decomposition

⟨s+, s5, x3⟩ ∩ ⟨ 2s+ + s5, s+ x1 − (s1+s3) x3, s+ x2 − (s1+s2) x3, (s1+s2) x1 − (s1+s3) x2⟩.

Here, s+ = s1 + s2 + s3 + s4 is the sample size. The likelihood ideal is the second inter-
sectand above. Its four generators confirm that the ML degree equals one. The likelihood
ideal is not a complete intersection since codim(I) = 3. For the implicit formulation of the
same model see [BCF23, Ex. 2.4].

As in the Introduction of [CHKS06], we compare this with the arrangement given
by four random ternary quadrics f1, f2, f3, f4 and additionally f5 = x3. Such a generic
arrangement is tame and gentle. The likelihood ideal equals the pre-likelihood ideal. It is
minimally generated by seven polynomials: the linear form 2(s1 + s2 + s3 + s4) + s5, four
generators of degree

(
6
1

)
, and two generators of degree

(
7
1

)
. The bidegree (3.3.4) of the

likelihood correspondence LA ⊂ P4 ×P2 equals 25p2 + 6pu + u2. Hence, the ML degree
equals 25, as predicted by [CHKS06, Thm. 1]. ♢

We now explain how maximum likelihood estimation on toric models can be described
in our hypersurface arrangement setup and how it relates to Subsection 3.2.9. Let A be an
integer matrix of size n× (N + 1), let z ∈ (C∗)N+1, and let XA,z ⊆ PN be the scaled projec-
tive toric variety that arises as the image of the monomial map ϕA,z. By Proposition 2.1.3,
we can assume that ϕA,z is one-to-one. Let yi for i = 0, . . . , N denote the coordinates of PN

and let H be the distinguished hyperplane arrangement H = {y0, . . . , yN , y0 + · · ·+ yN}.
As explained in Subsection 3.2.9, the map ϕA,z gives rise to an isomorphism of very affine
varieties between X ∗f ,z = {x ∈ (C∗)n : f (x) ̸= 0} and XA,z \ H, where f is the polynomial

f = ∑N
i=0 zixai . By Theorem 3.2.27, the signed Euler characteristic of XA,z \ H is equal to

the number of critical points of the function

xs1
1 xs2

2 . . . xsn
n f sn+1 , (3.3.7)

for generic values s1, . . . , sn and sn+1 = − 1
d (s1 + · · · + sn), where d = deg( f ). We can

encode this in the arrangement setup by setting fi = xi for i = 1, . . . , n = m− 1 and fm = f .
The likelihood function of this arrangement A = {x1, . . . , xn, f } agrees with (3.3.7). The
ML degree of XA,z is equal to the ML degree of A. In situations where ϕA,z is not one-
to-one, the ML degree of A is a product of the degree of the fibre with the ML degree of
XA,z. The question of how the ML degree depends on the parameters z ∈ (C∗)N+1 brings
us back to the topic of Euler stratifications, see Section 3.2.

For the convenience of the reader more akin to the arrangement literature, we would
like to emphasise that the setup described above differs from the notion of a toric arrange-
ment in the sense of e.g. [dD15].

One instance with n = 3 was seen in Example 3.3.9. Our representation of a toric model
depends on the choice of the parametrisation and so does gentleness of the arrangementA.
This is one reason why previous work on likelihood geometry emphasised the implicit
representation. We illustrate the toric setup with the most basic model in statistics.

Example 3.3.18. We revisit the independence model for two binary random variables from
Example 2.2.3. It is described by the four parameters a0, a1, b0, b1 giving rise to probabilities

p00 = a0b0, p01 = a0b1, p10 = a1b0, p11 = a1b1.

This parametrises the Segre surface {p00 p11 = p01 p10} in P3. The model has ML degree 1
(Example 2.2.10). The formulation of this model given in Example 3.3.17 is not gentle.
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We can also represent this independence model as a toric model by setting n = 4 and

A = { a0, a1, b0, b1, f } with f = a0b0 + a0b1 + a1b0 + a1b1.

This is a gentle arrangement of m = 5 surfaces in P3. Its likelihood ideal equals

I(A) = I0(A) =
〈

s1 + s2 + s5, s3 + s4 + s5, (b0 + b1)s4 + b1s5, (a0 + a1)s2 + a1s5
〉
.

The arrangement A is an overparametrisation. A minimal toric model would live in the
plane P2. For instance, one can choose the arrangement A′ = { x, y, z, xy + xz + yz +
z2 }. This arrangement is also gentle. Its multidegree is p2u + 2pu2 + u3. One can verify
I0(A′) = I(A′) computationally with the tools described in Subsection 3.3.6. ♢

It is no surprise that the physics of scattering amplitudes is closely connected to hyper-
surface arrangements, since the connection to Euler characteristics of very affine varieties
has already been pointed out in Subsection 3.2.8. We now turn to that setup.

In the CHY model [CHY14] one considers scattering equations on the moduli space
M0,n of n labelled points in P1. The scattering correspondence, analogous to the likelihood
correspondence, appears in [Lam24, Eq. (0.2)], and is studied in detail in [Lam24, § 3].
The formulation in [ST21, Eq. (3)] expresses the positive region M+

0,n of M0,n as a linear
statistical model of dimension n−3 on n(n−3)/2 states. Adding another coordinate for
the homogenisation, we have m = (n−1

2 ) in our setup. The ML degree equals (n − 3)!.
If the data s1, . . . , sm are real, then all (n − 3)! complex critical points are in fact real by
Varchenko’s Theorem [ST21, Prop. 1]. The case n = 6 is worked out in [ST21, Ex. 2]. This
model has m− 1 = 9 states and the ML degree is six. The nine probabilities pi are given
in [ST21, Eq. (6)]. These pi sum to 1 and all six critical points in [ST21, Eq. (9)] are real.

Usually, we think ofM0,n as the set of points for which the 2× 2 minors of the matrix[
0 1 1 . . . 1 1
−1 0 y1 . . . yn−3 1

]
are nonzero. If we homogenise the resulting equations by considering the 2× 2 minors of[

0 1 1 . . . 1 1
−1 x1 x2 . . . xn−2 xn−1

]
,

thenM0,n becomes the complement of the braid arrangement. This is the graphic arrange-
ment of the complete graph Kn−1 on n− 1 vertices (see Section 2.4), defined by the (n−1

2 )
linear forms xi − xj for 1 ≤ i < j ≤ n.

For example, M0,5 can be viewed as the complement of the arrangement in Exam-
ple 3.3.2. In this case, the image of the likelihood correspondence in P2 × P5 under the
map to data space P5 is the hyperplane {s12 + s13 + s14 + s23 + s24 + s34 = 0}. This map
is two-to-one. By [ST21, § 2], the fibres are the two solutions to the scattering equations
in the CHY model for five particles. A similar identification works for every graphic ar-
rangement, when some edges of Kn−1 are deleted. Physically, this corresponds to setting
some Mandelstam invariants to zero. The article [EPS24] studies graphic arrangements of
ML degree one from a physics perspective. For instance, in [EPS24, Ex. 1.3], the authors
study K5 with three edges removed.

3.3.3. Gentle, free and tame arrangements
The concept of freeness (Definition 2.4.4) has received considerable attention in the theory
of hyperplane arrangements, see e.g. [OT13, Thm. 4.15]. Also, the notion of tameness
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(Definition 2.4.5) appeared in this context as a weakening of the freeness property. In this
subsection we explore the relationship between these concepts and the gentleness of an
arrangement. We shall explain the following (non)implications:

free tame

gentlenonlinear
\

\

linear nonlinear\

By Lemma 3.3.3, A is free if and only if the likelihood module M(A) has projective di-
mension one if and only if D(A) is free. Clearly, every free arrangement is tame. The braid
arrangement from Example 3.3.2 is free. We have already seen that the braid arrangement
is also gentle. This holds more generally.

Theorem 3.3.19. Tame linear arrangements are gentle.

Proof. The statement follows from [CDFV11, Cor. 3.8] and Proposition 3.3.10. The ideal
I in [CDFV11] is our pre-likelihood ideal I0(A), and their variety Σ is our parametric
likelihood correspondence LA.

In P2, every linear arrangement is free, as a direct application of Saito’s criterion (The-
orem 2.4.6), see [OT13, Ex. 4.20]. Thus, every linear arrangement in P2 is gentle. Although
freeness is a strong property for an arrangement, for hypersurfaces it does not necessarily
imply gentleness. We saw a free arrangement that is not gentle in Example 3.3.17. We
do not know whether the reverse implication “gentle ⇒ tame” holds. To the best of our
knowledge, this is unknown even for the linear case; see the Introduction of [CDFV11].

Problem 3.3.20. Is every gentle arrangement tame?

For a linear arrangement, freeness is equivalent to the (pre-)likelihood ideal being a
complete intersection [CDFV11, Thm. 2.13]. As Example 3.3.17 shows, this is not necessar-
ily true for hypersurfaces. However, under the additional assumption that A is gentle, we
can generalise [CDFV11, Thm. 2.13]. This connects to [HS14] where the authors ask for a
characterisation of statistical models whose likelihood ideal is a complete intersection.

Theorem 3.3.21. Let A be a gentle arrangement of hypersurfaces. Then A is free if and only if the
likelihood ideal I(A) is a complete intersection.

Proof. Suppose A is free of rank l, i.e. the log-derivation module D(A) is a free module
with generators {D1, . . . , Dl}. These generators form the columns of the matrix A from
Subsection 3.3.1. Consequently, the pre-likelihood ideal I0(A) has l generators. By as-
sumption, A is gentle, so I0(A) = I(A). Since LA has codimension l, this shows that I(A)
is a complete intersection.

Conversely, assume I(A) has l generators g1, . . . , gl . Similarly to Theorem 3.3.12, for
1 ≤ i ≤ l, let θi ∈ DerS(A) be a derivation for which θi(ℓA) = gi. Here, S = C[s1, . . . , sm]
and DerS(A) is the module of S-linear logarithmic derivations on S ⊗C R. The module
DerS(A) is generated by the θi and has rank l, hence it is free. By extension of scalars,

Ω1
R/C(A)⊗R (S⊗C R) ∼= Ω1

S⊗R/S(A),

and Ω1
S⊗R/S(A) is dual to DerS(A). Then, by tensor-hom adjunction, we obtain

DerS(A) ∼= HomS⊗R(Ω1
R/C(A)⊗R (S⊗C R), S⊗C R)

∼= HomR(Ω1
R/C(A), HomS⊗R(S⊗C R, S⊗C R))

∼= HomR(Ω1
R/C(A), S⊗C R).

87



Since Ω1
R/C

(A) = Ω1(A) is finitely presented and S⊗C R is faithfully flat, it follows that
Der(A) = Hom(Ω1(A), R) is free.

In the case of a free and gentle arrangement, it is now easy to read off the ML degree.

Corollary 3.3.22. Let A be free and gentle. If the columns of A have degrees d1, . . . , dl then

MLdeg(A) = ∏
i : di>0

di. (3.3.8)

Proof. By definition, the ML degree is the leading coefficient in the multidegree of I(A).
Since A is free and gentle, by Theorem 3.3.21, the likelihood ideal is a complete intersec-
tion, and it is linear in the s variables. Therefore, the class in (3.3.4) is the product

[LA] =
l

∏
i=1

(di p + u) .

Our assertion now follows because (3.3.8) is the leading coefficient of this binary form.

Example 3.3.23. For the braid arrangement in Example 3.3.2, the matrix AT has two rows
of positive degree, namely one and two. Hence, by (3.3.8), MLdeg(A) = 1 · 2 = 2. Anal-
ogously, for general n, the braid arrangement A(Kn) has ML degree (n− 3)!, as already
stated in our physics discussion aboutM0,n in Subsection 3.3.2. ♢

Symmetric algebras and Rees algebras are ubiquitous in commutative algebra. Many
papers studied them, especially when M has a short resolution. The Fitting ideals of M play
an essential role. Let It(A) be the ideal generated by the t× t-minors of a matrix A ∈ Rm×l

with M = coker(A). These ideals are independent of the presentation of M [Eis13, § 20.2].
Early work of Huneke [Hun81, Thm. 1.1] characterises when the symmetric algebra of a

module M with pd(M) = 1 is a domain, and thus when a free arrangement is gentle. This
happens if and only if depth(It(A), R) ≥ rk(A)+ 2− t for all t = 1, . . . , rk(A). Huneke also
showed that in this case the symmetric algebra is a complete intersection, one direction of
our Theorem 3.3.21. Simis and Vasconcelos [SV81] obtained similar results concurrently.

In the 40+ years since these publications, many variants have been found. For example,
it was studied for which k all inequalities depth(It(A)) ≥ rk(A)+ (1+ k)− t hold. Then M
is said to have property Fk. Assuming Fk and related hypotheses, properties (e.g. Cohen–
Macaulay) of symmetric and Rees algebras of modules were studied.

A notable special case arises if the double dual M∨∨ of a module M is free. In [SUV03,
§ 5] such an M is called an ideal module because it behaves very much like an ideal. Every
ideal module M is the image of a map of free modules, and various criteria for gentleness
(i.e. linear type) of M can be derived. These might give rise to more efficient compu-
tational tests for gentleness. For example, the likelihood module of the octahedron in
Example 3.3.37 is an ideal module.

3.3.4. Generic arrangements
In this subsection we study the pre-likelihood ideal of arrangements of generic hypersur-
faces. Though less important for a statistical application, this is a very natural setting in
algebraic geometry. For hyperplanes, genericity means that the associated matroid is uni-
form. Such arrangements are known to be tame and hence gentle, by Theorem 3.3.19. We
conjecture that this holds true for general hypersurface arrangements.
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Conjecture 3.3.24. Any generic hypersurface arrangement is gentle.

The goal of this subsection is to work towards this conjecture. The main results are
that generic hypersurface arrangements are tame (Corollary 3.3.33), and a resolution of the
module Der(A), which gives access to the number of generators of I0(A) (Theorem 3.3.30).
Moreover, we show that I0(A) is Cohen–Macaulay for generic arrangements.

We first construct a minimal free resolution of Der(A). By Proposition 2.4.3, Der(A)
contains the Euler derivation as a direct summand, i.e. Der(A) = Der0(A) ⊕ RθE. It
suffices to construct a resolution of Der0(A). The relation with the matrix Q from (3.3.1)
is as follows: the cokernel of QT is the module of logarithmic differential forms Ω1(A) =
coker(QT). The module Der(A) is its dual, Ω1(A) = Hom(Der(A), R). Also, Ω1(A)
contains a direct summand dual to the Euler derivation; we write Ω1(A) = Ω1

0(A)⊕ RωE.
The module Ω1

0(A) can be obtained as the cokernel of the transposed pruned matrix

Q0 =


0 . . . 0 ∂ f1

∂x1

∂ f1
∂x2

. . . ∂ f1
∂xn

f2 . . . 0 ∂ f2
∂x1

∂ f2
∂x2

. . . ∂ f2
∂xn

...
. . .

...
...

...
. . .

...
0 . . . fm

∂ fm
∂x1

∂ fm
∂x2

. . . ∂ fm
∂xn

 ,

which is constructed from Q by deleting the first column. We describe how to obtain a
resolution of Der0(A) from Q0 in Theorem 3.3.30. First, we need some preliminary results.

Lemma 3.3.25. The Fitting ideal Im(Q0) has depth at least n.

Proof. The Fitting ideal Im(Q0) is generated by the maximal minors of Q0. We need to
show that there exists a regular sequence in Im(Q0) of length n. For this, we can take
the sequence defined by the minors of the first k− 1 columns and one additional column
among the last n columns of Q0. Such a minor is of the form ±∂xi f1 ∏k

j=2 f j. By genericity
of the f j, these form a regular sequence of length n.

Lemma 3.3.26. The sheaf Ω̃1
0(A) associated to Ω1

0(A) is locally free.

Proof. Consider the two short exact sequences

0→ Der0(A)→ Rn → J( f )→ 0,

where J( f ) denotes the Jacobian ideal J( f ) =
〈

∂ f
∂x1

, . . . , ∂ f
∂xn

〉
, and

0→ J( f )→ R→ R/J( f )→ 0.

Applying Hom(−, R) to both of these sequences yields

Exti(Der0(A), R) ∼= Exti+2(R/J( f ), R). (3.3.9)

Let p ∈ Spec(R) be a prime ideal that is not the irrelevant ideal. Then, for all i > 0,(
Exti+2(R/J( f ), R)

)
p
= Exti+2((R/J( f ))p, Rp) = 0,

as J( f ) is supported in codimension two (using genericity of A). Therefore, by (3.3.9),(
Exti(D0(A), R)

)
p
= 0 for all i > 0

and ˜Der0(A) is locally free. This implies local freeness of Ω̃1
0(A).
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The statement of Lemma 3.3.26 is slightly weaker than requiring Ω1
0(A) to be locally

free as a module as this would also need the localisation at the irrelevant ideal to be free.

Lemma 3.3.27. For a generic arrangement A, the module Ωp(A) is given by

Ωp(A) ∼=
p∧

Ω1(A).

Proof. We first show the identity

Ωp(A) ∼=
( p∧

Ω1(A)
)∨∨

. (3.3.10)

In the hyperplane case, this has appeared as Proposition 2.2 in [DS09]. The proof works
similarly for hypersurfaces, as we now show. Let jp :

∧p Ω1(A)→ Ωp(A) be the canonical
inclusion from Proposition 2.4.3 and let Ep(A) denote its cokernel. This module is sup-
ported on the singular locus of A and hence in codimension at least two (by genericity of
A). Therefore, HomR(Ep, R) = Ext1

R(Ep, R) = 0, and it follows that the dual map

j∨p : Ωp(A)∨ →
( p∧

Ω1(A)
)∨

is an isomorphism. Since Ωp(A) is reflexive by Proposition 2.4.3, the isomorphism (3.3.10)
follows from dualising again.

As Ω̃1(A) is locally free by Lemma 3.3.26, the double dualising is not necessary.

Definition 3.3.28. The pruned module of logarithmic p-forms is Ωp
0(A) :=

∧p Ω1
0(A).

Lemma 3.3.29. The module Der0(A) is isomorphic to a pruned module of logarithmic forms

Der0(A) ∼= Ωn−2
0 (A).

Proof. By Item 3 in Proposition 2.4.3, there is an isomorphism Der(A) ∼= Ωn−1(A). Using
Lemma 3.3.27 it follows that

Der(A) ∼=
n−1∧ (

Ω1
0(A)⊕ RωE

)
∼=

n−1⊕
k=0

(
k∧

Ω1
0(A)⊗

n−1−k∧
RωE

)
∼=

n−1∧
Ω1

0(A)⊕
n−2∧

Ω1
0(A).

Since rk(Ω1
0(A)) = n− 1 and Der(A) = Der0(A)⊕ RθE, the desired statement follows.

We are now ready to construct a (minimal) free resolution of Der0(A).

Theorem 3.3.30. Let A = { f1, . . . , fm} be a generic arrangement and assume deg( f1) = · · · =
deg( fm) ≥ 2. Then the module Der0(A) has the following minimal free resolution:

0→ Symn−2 Rm → · · · → Symk Rm ⊗
n−2−k∧

Rm+n−1 → · · · →
n−2∧

Rm+n−1 → Der0(A)→ 0
(3.3.11)

The differential is given by

d : Symk Rm ⊗
n−2−k∧

Rm+n−1 → Symk−1 Rm ⊗
n−2−k+1∧

Rm+n−1

(a1 ⊗ · · · ⊗ ak)⊗ω 7→
k

∑
i=1

(a1 ⊗ · · · ⊗ âi ⊗ · · · ⊗ ak)⊗ (QT
0 (ai) ∧ω), (3.3.12)

and the map
∧n−2 Rm+n−1 → D0(A) comprises the isomorphism from Lemma 3.3.29.
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Remark 3.3.31. The complex (3.3.11) is in fact a graded complex. This grading is obtained
as follows. Let e denote the degree of f1, . . . , fm. Then the matrix Q0 turns the codomain
Rm+n−1 into a graded free module

Rm+n−1 = R(e)m−1 ⊕ R(e− 1)n.

Considering Rm to have zero degrees, this induces a grading on the modules Symk Rm ⊗∧n−2−k Rm+n−1. In particular, the differential d in (3.3.12) is homogeneous of degree zero.

Proof. Since the arrangement A is generic,

0→ Rm QT
0−→ Rm+n−1 → Ω1

0(A)→ 0 (3.3.13)

is a free resolution of Ω1
0(A). By Lemma 3.3.29, a free resolution of Der0(A) is given by

a free resolution of the (n− 2)nd exterior power of Ω1
0(A). Such a complex is constructed

by Lebelt in [Leb77, Beispiel (ii)], giving rise to the complex (3.3.11). Exactness of this
complex follows from [Leb74, Satz 2], together with Lemma 3.3.25. Therefore, (3.3.11) is a
free resolution of Ωn−2

0 (A). It remains to show minimality. By Remark 3.3.31, the complex
(3.3.11) is graded and, since deg( fi) ≥ 2 ∀i = 1, . . . , m, all entries of Q0 are contained in
the maximal ideal of R. Hence, by Lemma 2.3.4, the resolution is minimal.

Example 3.3.32. Consider the case of five generic quadrics in P3, i.e. we take n = 4 and
m = 5. Using the computational techniques presented in Subsection 3.3.6, we can compute
a resolution of the log-derivation module D(A) ∼= Der(A) via the following commands
(we do this over a finite field to speed up the computation).

R = ZZ/10007[x_1..x_4];

A = toList(1..5) / (i -> random(2, R));

D = logDerModule A;

betti res D

The result shows that we have a minimal free resolution

0→ R15 → R40 → R29 → D(A)→ 0.

The ranks agree with the numbers (m+k−1
k )(m+n−1

n−2−k ) we obtain from Theorem 3.3.30, except
for 29 = (4+5−1

4−2 ) + 1, where the +1 comes from the additional Euler derivation. ♢

As a consequence of the proof of Theorem 3.3.30 we also obtain the following result.

Corollary 3.3.33. Any generic arrangement A is tame.

Proof. Applying Lebelt’s construction [Leb77, Beispiel (ii)] to the resolution (3.3.13) yields
free resolutions of length p for any pth exterior power of Ω1

0(A). By Lemma 3.3.27, this
implies pdR(Ω

p(A)) ≤ p.

A further consequence of Theorem 3.3.30 is that we obtain the numbers and degrees
of minimal generators of the pre-likelihood ideal I0(A). The relation to the pre-likelihood
ideal can be seen as follows. As before, let

(
A
B

)
∈ R(m+n)×l be a matrix whose columns

generate ker(Q), so that I0(A) is generated by the entries of (s1, . . . , sm) · A. Therefore,
to obtain the number of minimal generators of I0(A) we need to know the number of
minimal generators of ker(Q). It suffices to consider Q0 since the Euler derivation simply
contributes a linear generator in the s variables. Dualising the sequence (3.3.13), we get

0→ Hom(Ω1
0(A), R)→ Rm+n−1 Q0−→ Rm → Ext1

R(Ω
1
0(A), R)→ 0,
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which is again exact. The leftmost nonzero term is precisely Der0(A). Therefore, ker(Q0) =
im(Der0(A) ↪→ Rm+n−1), so the numbers of minimal generators of ker(Q0) and Der0(A)
agree. The latter can be read off from Theorem 3.3.30 to be (m+n−1

n−2 ). Therefore, I0(A) is
minimally generated by (m+n−1

n−2 ) + 1 many elements. We can make a more precise state-
ment by considering the grading in Remark 3.3.31.

Corollary 3.3.34. Assume that A = { f1, . . . , fm} is generic and all polynomials have the same
degree deg( f1) ≥ 2. Then there are (m−1

n−2) minimal generators of I0(A) of minimal degree (not
considering the linear form corresponding to the Euler derivation).

Proof. Let e = deg( f1). The generators of minimal degree come from the minimal degree
generators of

∧n−2 Rm+n−1 in the complex (3.3.11). The module Rm+n−1 splits as R(e)m−1⊕
R(e− 1)n, see Remark 3.3.31. Therefore, we have

n−2∧
Rm+n−1 ∼=

n−2⊕
k=0

(
k∧

R(e)m−1 ⊗
n−2−k∧

R(e− 1)n

)
.

The summand with the lowest degree is obtained for k = 0 and is
∧n−2 R(e)m−1. It has

rank (m−1
n−2) and thus the claim follows.

Example 3.3.35. In the setup of Example 3.3.32, we can compute that I0(A) has 29 gener-
ators. One of them is linear in the s variables, there are 6 = (5−1

4−2) generators of degree six
in the x variables, 16 of degree seven and six of degree eight. ♢

We now come back to the case where A = { f1, . . . , fm} is any generic arrangement. A
further step towards proving Conjecture 3.3.24 is the following statement.

Proposition 3.3.36. For a generic A, the pre-likelihood ideal I0(A) is Cohen–Macaulay.

The proof is similar to the proof of [CDFV11, Thm. 3.7] showing the statement above
for tame linear arrangements, though the genericity assumption simplifies our proof a bit.

Proof. Firstly, we show that the following complex of (S⊗ R)-modules is exact:

0→ S⊗ R ∂−→ Ω1
S⊗R/R(A)

∂−→ . . . ∂−→ Ωn
S⊗R/R(A)→ (S⊗ R)/I0 → 0. (3.3.14)

Here, the differential ∂ is given by ∂(ω) = ωs ∧ω, where ωs is the logarithmic one-form

ωs =
m

∑
i=1

si
d fi

fi
.

We first show exactness at Ωn
S⊗R/R(A). For this, note that there is an isomorphism

S⊗ R ∼−→ Ωn
S⊗R/R(A), 1 7→ 1

f
dx1 ∧ · · · ∧ dxn.

Moreover, we have Ωn−1
S⊗R/R(A) ∼= DerS(A) by Proposition 2.4.3. Under these identifica-

tions, exactness at Ωn
S⊗R/R(A) follows. To show exactness at all other positions, we do this

locally at all maximal ideals m ⊂ S ⊗ R. First assume that m is not the irrelevant ideal.
By Lemma 3.3.26, Ωp

S⊗R/R(A)m is a free (S ⊗ R)m-module for all 0 ≤ p ≤ n. Then the
complex (3.3.14) becomes a Koszul-like complex and exactness follows. To show exactness
locally at the irrelevant ideal, we apply Corollary 3.3.33 together with Lemma 3.11 from
[CDFV11] which does not require the arrangement to be linear.
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By the Auslander–Buchsbaum formula, I0 is Cohen–Macaulay if and only if pdS⊗R((S⊗
R)/I0) = codim((S ⊗ R)/I0). Since the likelihood correspondence has codimension n,
we have codim((S ⊗ R)/I0) = n (confer Lemma 3.3.5). It remains to show pdS⊗R((S ⊗
R)/I0) ≤ n. Consider the complex Ωn−•

S⊗R/R(A) obtained from (3.3.14) by replacing the last
map by zero, i.e. this complex is exact except for the zeroth homology which is (S⊗ R)/I0.
Let p ∈ Spec((S⊗ R)/I0) and let κ = (S⊗ R)p/p(S⊗ R)p be the residue field. The first
hypertor spectral sequence, Theorem 2.3.6, applied to the localised complex at p gives

E1
pq = Tor(S⊗R)p

q (Ωn−p
S⊗R/R(A)p, κ)⇒ Tor(S⊗R)p

p+q (Ωn−•
S⊗R/R(A)p, κ). (3.3.15)

As Ωn−•
S⊗R/R(A)p has only nontrivial homology in degree zero, we have

Tor(S⊗R)p
p+q (Ωn−•

S⊗R/R(A)p, κ) ∼= Tor(S⊗R)p
p+q (((S⊗ R)/I0)p, κ). (3.3.16)

By Corollary 3.3.33, the arrangement A is tame, i.e. Tor(S⊗R)p
q (Ωn−p

S⊗R/R(A)p, κ) = 0 for p +

q > n. Then, combining (3.3.15) and (3.3.16), this implies Tor(S⊗R)p
p+q (((S⊗ R)/I0)p, κ) = 0

for p + q > n and all primes p ∈ Spec((S⊗ R)/I0). Therefore, pdS⊗R((S⊗ R)/I0) ≤ n.

In the next subsection we turn to a different case of arrangements, namely hyperplane
arrangements with structure encoded by graphs. Those arise in particle physics.

3.3.5. Graphic arrangements
Recall the notion of graphic arrangements from Section 2.4. They are subarrangements
of the braid arrangement. In particle physics [EPS24, Lam24] they arise from the moduli
spaceM0,n. Throughout this subsection, let G = (V, E) be a simple undirected graph with
V = {1, . . . , n}, let R = C[x1, . . . , xn] and let A(G) =

{
xi − xj : {i, j} ∈ E

}
be the graphic

arrangement. A classical result due to Stanley, Edelman and Reiner states that A(G)
is free if and only if the graph G is chordal (see [AKMM23] for further developments).
For example, the complete graph G = K4 in Example 3.3.2 is chordal, and we saw that
D(A(K4)) ∼= R3. The octahedron in Example 3.3.37 is not chordal.

In this subsection, we examine gentleness for graphic arrangements. A priori, it is not
clear that there exist graphs whose arrangement is not gentle. We now show this.

Example 3.3.37 (Octahedron). Consider the edge graph G of an octahedron, depicted in
Figure 3.8. The graphic arrangement A(G) consists of the twelve hyperplanes

x1−x2, x1−x3, x1−x5, x1−x6, x2−x3, x2−x4, x2−x6, x3−x4, x3−x5, x4−x5, x4−x6, x5−x6.

The likelihood module has twelve generators and six relations, of degrees one, two and
three (four times), in addition to the Euler relation of degree zero. These relations corre-
spond to the seven generators of the pre-likelihood ideal I0. A computation in Macaulay2
shows that I0 : (x1− x2) ̸= I0, so Proposition 3.3.10 tells us thatA(G) is not gentle. Another
computation shows that the ideal quotient I = I0 : (x1 − x2) is a prime ideal, and it hence
equals the likelihood ideal I(A(G)). The ideal I differs from I0 by only one additional
generator f ∈ R of degree

(
3
3

)
with 3092 terms. Computing P = I0 : f reveals the second

minimal prime of the pre-likelihood ideal I0, and we obtain the prime decomposition

I0 = I ∩ P where P =

〈
∑

ij∈E
sij , x1 − x6, x2 − x6, x3 − x6, x4 − x6, x5 − x6

〉
.

The linear forms xi − x6 in P generate the irrelevant ideal for the ambient space P5 of
A(G). One further computes that pd(Ω1(A(G))) = 2, so A(G) is not tame either. ♢
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Figure 3.8: The octahedron and its edge graph.

Example 3.3.37 is uniquely minimal among non-gentle arrangements.

Theorem 3.3.38. Consider the graphical arrangements A(G) for all graphs G with n ≤ 6 vertices.
With the exception of the octahedron graph, all of these arrangements are gentle.

Proof. We prove this by exhaustive computation using our tools from Subsection 3.3.6.

Except for the octahedron, all graphical arrangements on fewer than six vertices satisfy
pd(Ω1(A(G))) = 1. The octahedron gives rise to more non-gentle graphical arrangements.

Corollary 3.3.39. Any graph that contains the octahedron as an induced subgraph is not gentle.

This is a corollary of Proposition 3.3.40, which holds for all hyperplane arrangements
A, not just graphical ones. Any arrangement of a vertex-induced subgraph is a localisation
at the intersection of the hyperplanes corresponding to the edges of the induced subgraph.

Proposition 3.3.40. The localisation of a gentle hyperplane arrangement is gentle.

Proof. Let A be a gentle arrangement and X ∈ L(A). Suppose that AX = { f1, . . . , fk} and
A \AX = { fk+1, . . . , fm}. Since the fi are linear, the following ideals are prime:

P = ⟨ f1, . . . , fk⟩ ⊂ R and P̃ = P + ⟨s1, . . . , sm⟩ ⊂ R [s1, . . . , sm] .

Since I0(A) is prime and I0(A) ⊆ P̃, the localisation I0(A)P̃ ⊂ R[s]P̃ is prime. We claim

I0(A)P̃ = ⟨θ(ℓA) : θ ∈ Der(A)P⟩ = ⟨θ(ℓA) : θ ∈ Der(AX)P⟩. (3.3.17)

The first equality is by Theorem 3.3.12 since localisation is exact. The second follows from
Der(A)P = Der(AX)P which holds for localisations of arrangements [OT13, Ex. 4.123].

We now prove that si ∈ I0(A)P̃ for all k + 1 ≤ i ≤ m. To this end, fix si, its corre-
sponding linear form fi and hyperplane Hi = { fi = 0} for k + 1 ≤ i ≤ m. By Proposi-
tion 2.4.3, we have Der(A) = RθE ⊕Der0(A). As Der0(A) ⊊ Der0(A\ fi) we can choose
θHi ∈ Der0(A\ fi) \Der0(A). Hence, θHi( fi) = g for some nonzero g ∈ R and θHi( f j) = 0
for all j ̸= i. The assumption fi /∈ AX yields θHi ∈ Der(AX). Using (3.3.17) we obtain

θHi(ℓA) = si
g
fi
∈ I0(A)P̃.

As I0(A)P̃ contains no polynomials that lie in R, we get g/ fi /∈ I0(A)P̃. Thus, si ∈ I0(A)P̃.
Then the quotient I0(A)P̃/⟨si : k + 1 ≤ i ≤ m⟩ is also prime and by (3.3.17) equals〈

θ(ℓAX ) : θ ∈ Der(AX)P
〉
⊂ R[s1, . . . , sk]P+⟨s1,...,sk⟩.

The preimage of this ideal in R[s1, . . . , sk] is the prime ideal I0(AX). Hence, AX is gentle.

94



The proof above is independent of A being linear. Hence, for any gentle arrangement
of hypersurfaces A and a prime ideal P ⊂ R the subarrangement A∩ P is gentle.

Since induced subgraphs give rise to localisations, Proposition 3.3.40 is one ingredient
in the following conjectural characterisation of graphic arrangements that are gentle.

Conjecture 3.3.41. A graphic arrangement A(G) is gentle if and only if the octahedron graph
cannot be obtained from G by a series of edge contractions of an induced subgraph of G.

This conjecture is supported by Theorem 3.3.38. Besides localisations, a proof would
also require restrictions to a hyperplane which in the graphic case correspond to edge con-
traction. For general linear arrangements, restrictions do not preserve gentleness, though.

Proposition 3.3.42. Restrictions of gentle hyperplane arrangements need not be gentle.

Proof. Edelman and Reiner [ER93] constructed a free arrangement of 21 hyperplanes in
P4 with a restriction to 15 hyperplanes in P3 which is not free. The linear forms in that
nonfree arrangement A are all subsums of x1 + x2 + x3 + x4 which is the 4-dimensional res-
onance arrangement. This A is not tame. The pre-likelihood ideal I0(A) has five minimal
generators. The ML degree is 51. Using the Macaulay2 tools in Subsection 3.3.6, we find
that the ideal quotient I0(A) : x1 strictly contains I0(A). Therefore, A is not gentle.

Restriction of A(G) at a hyperplane models contraction of an edge in G. This preserves
chordality. Thus, restrictions of free graphic arrangements are again free. Therefore, one
might still hope that restrictions of a gentle graphic arrangement are gentle.

We proceed to the second main result in this subsection, a combinatorial construction of
generators for the pre-likelihood ideal I0(A(G)) of any graph G. Consider the derivations

θk = x k
1 ∂x1 + x k

2 ∂x2 + · · · + x k
n ∂xn for k = 0, 1, . . . , n− 1.

It follows from Saito’s criterion (Theorem 2.4.6) that {θ0, θ1, . . . , θn−1} is a basis of the free
module Der(A(Kn)). Before removing edges from Kn to obtain an arbitrary graph, it is
instructive to contemplate Theorem 3.3.12 for Saito’s derivations θk.

Example 3.3.43. The log-likelihood function for the braid arrangement A = A(Kn) equals

ℓA = ∑
1≤i<j≤n

sij · log(xi − xj). (3.3.18)

By applying the derivation θk to that function, we obtain a polynomial in C[x, s], namely

θk(ℓA) = ∑
1≤i<j≤n

(
k−1

∑
ℓ=0

xℓi xk−1−ℓ
j

)
· sij. (3.3.19)

We know from Theorem 3.3.12 that these polynomials generate I0(A), and hence also the
likelihood ideal I(A) as A is tame and thus gentle. For n = 4 see Examples 3.3.2. ♢

Now let G = (V, E) be an arbitrary graph and let A = A(G) be its graphic arrange-
ment. The log-likelihood function ℓA is the sum in (3.3.18) but now restricted to pairs {i, j}
in E. The corresponding restricted sum in (3.3.19) still lies in the ideal I0(A).

A subset T of [n] is a separator of G if the induced subgraph on [n]\T is disconnected.
We denote this subgraph by G\T, and we consider any connected component C of G\T.
Following [Müh], we define the separator-based derivation associated to the data above:

θT
C = ∑

i∈C
∏
t∈T

(xi − xt) · ∂xi .

The following is implied by the main result in [Müh] along with Theorem 3.3.12.
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Theorem 3.3.44. The module Der(A(G)) is generated by θ0, . . . , θn−1 and a set of separator-based
derivations. Hence, I0(A) is generated by the images of ℓA under the derivations θk and θT

C.

The generators in this theorem are redundant. We do not need θk if k exceeds the
connectivity of G, and not all separator-based derivations θT

C are necessary to generate
Der(A(G)) and I0(A). It remains an interesting problem to extract minimal generators.

Example 3.3.45 (Octahedron revisited). Let G be the graph in Example 3.3.37. In this
case it suffices to consider only (inclusionwise) minimal separators T; these are {2, 3, 5, 6},
{1, 3, 4, 6} and {1, 2, 4, 5}. The connectivity of the graph is four. The module Der(A(G)) is
minimally generated by the following eight derivations:

θ0, θ1, θ2, θ3, θ4, θ
{2,3,5,6}
{1} , θ

{1,3,4,6}
{2} , θ

{1,2,4,5}
{3} .

Setting zij := xi − xj, we infer the following set of minimal generators for the ideal I0(A):

θk(ℓA) = ∑
(i,j)∈E

(
k−1

∑
ℓ=0

xℓi xk−1−ℓ
j

)
· sij for k = 1, . . . , 4,

θ
{2,3,5,6}
{1} (ℓA) = z13z15z16 · s12 + z12z15z16 · s13 + z12z13z16 · s15 + z12z13z15 · s16,

θ
{1,3,4,6}
{2} (ℓA) = z23z24z26 · s12 + z21z24z26 · s23 + z21z23z26 · s24 + z21z23z24 · s26,

θ
{1,2,4,5}
{3} (ℓA) = z32z34z35 · s13 + z31z34z35 · s23 + z31z32z35 · s34 + z31z32z34 · s35.

These seven generators are linear in s, and they have the x-degrees stated in Example
3.3.37. Since θ0(ℓA) = 0, this derivation does not yield a generator of I0(A). ♢

3.3.6. Software and computations

We have implemented functions in Macaulay2 to compute the pre-likelihood ideal I0(A)
and the likelihood ideal I(A) for any arrangement A. The input consists of m homoge-
neous polynomials f1, . . . , fm in n variables x1, . . . , xn. Along the way, our code creates the
four modules seen in Subsection 3.3.1, and it also computes the relevant multidegrees.

Our code is made available, along with various examples, in the MathRepo code repos-
itory hosted at MPI-MiS via [KKM+24b]. In this subsection we offer a guide on how to
use the software, and present three short case studies.

We start with the function preLikelihoodIdeal. Its input is a list F of m homogeneous
elements in a polynomial ring R. The list F defines an arrangement A in Pn−1. Our code
augments the given ring R with additional variables s1, s2, . . . , sm, one for each element in
the list F, and it outputs generators for the pre-likelihood ideal I0(A). We can then analyse
that output and test whether it is prime, in which case I0(A) = I(A). Our code also has a
function likelihoodIdeal which computes I(A) directly even if A is not gentle.

Example 3.3.46. Revisiting Example 3.3.17, we consider an arrangement A of four conics
and one line in P2. We compute its pre-likelihood ideal I0(A) as follows:

R = QQ[x,y,z];

F = {x^2+y^2+z^2, x^2+2*y*z-z^2, y^2+2*z*x-x^2, z^2+2*x*y-y^2, x+y+z};

I = preLikelihoodIdeal(F)
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The ideal I0(A) has seven minimal generators, starting with 2(s1 + · · · + s4) + s5. Our
choice of A exhibits the generic behaviour in Example 3.3.17. In particular, the ML degree
is 25. Running codim I, multidegree I, betti mingens I computes the codimension
three, the multidegree 25p2u + 6pu2 + u3 and the total degrees of minimal generators. A
following isPrime I returns true, so the arrangement A is indeed gentle. ♢

We now turn to our case studies. The first is a non-gentle arrangement of planes in P3.

Example 3.3.47. The following arrangement is due to Cohen et al. [CDFV11, Ex. 5.3]:

R = QQ[x1,x2,x3,x4];

F = {x1,x2,x3,x1+x4,x2+x4,x3+x4,x1+x2+x4,x1+x3+x4,x2+x3+x4}

ass preLikelihoodIdeal F

I = likelihoodIdeal F;

codim I, multidegree I, betti mingens I, isPrime I

We obtain I(A) from I0(A) by removing the associated prime ⟨s1 + · · ·+ s9, x1, x2, x3, x4⟩.
The likelihood ideal I(A) has six minimal generators, and multidegree

[LA] = 5p3u + 9p2u2 + 5pu3 + u4. ♢

Example 3.3.48 (No 3-way interaction). A commonly studied model for three binary ran-
dom variables (e.g. [Sul18, Ex. 7.3.12]) is given by

pijk = aijbikcjk for i, j, k ∈ {0, 1}.

This parametrises the toric hypersurface {p000 p110 p101 p011 = p100 p010 p001 p111} ⊂ P7. This
toric model fits into our setup by setting m = 9, and considering the n = 12 parameters

x = (a00, a10, a01, a11, b00, . . . , b11, c00, . . . , c11).

We take A to be the twelve coordinate hyperplanes a00, a10, . . . , c11 together with

f (x) = a00b00c00 + a00b01c01 + a01b00c10 + a01b01c11

+ a10b10c00 + a10b11c01 + a11b10c10 + a11b11c11.

The pre-likelihood ideal I0(A) has 25 minimal primes, so the arrangement is far from
gentle. The likelihood ideal I(A) can be computed by performing the saturation I0(A) :
a00 f 2 and checking that this ideal is prime. We found this to be the fastest method.

An alternative parametrisation of the model with only seven parameters xi is given by

g(x) = x6
1 + x5

1x2 + x5
1x3 + x5

1x4 + x3
1x2x3x5 + x3

1x3x4x6 + x3
1x2x4x7 + x2x3x4x5x6x7.

The arrangement A′ = {x1, . . . , x7, g(x)} is not gentle either. The ideal I0(A′) has 19
generators. The likelihood ideal is I0(A′) : x1x2x3x4x5. It has 48 generators in various
degrees, some of which are quartic in the s-variables. The multidegree

[LA′ ] = 3p6u + 13p5u2 + 25p4u3 + 30p3u4 + 18p2u5 + 6pu6 + u7

reveals the correct ML degree of three, known from [ABB+19, Ex. 32]. ♢
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Example 3.3.49 (CEGM model). Consider the moduli space of six labelled points in linearly
general position in P2. This very affine variety arises in the CEGM model in particle
physics [CEGM19]. We write this as the projective arrangement A with m = 15 and n = 5
given by the 3× 3 minors of the 3× 6 matrix1 0 0 1 1 1

0 1 0 1 x1 x2
0 0 1 1 x3 x4

 .

Using x5 for the homogenisation, we compute the pre-likelihood ideal I0(A) as follows:

R = QQ[x1,x2,x3,x4,x5];

F = {x1,x2,x3,x4,x5,x1-x2,x1-x3,x1-x5,x2-x5,x2-x4,x3-x4,x3-x5,x4-x5,

x1*x4-x2*x3,x1*x4-x2*x3-x1+x2+x3-x4};

I0 = preLikelihoodIdeal F;

The ideal I0 of this arrangement is simple to define, having only six generators of degrees(
2
1

)
(twice) and

(
3
1

)
(four times). However, due to their size, computing one Gröbner

basis of this ideal is already challenging. Using numerical irreducible decomposition from
[BT18] we obtain that I0 has 25 associated primes, so A is certainly not gentle. ♢

3.4. Conclusion
In this chapter we have studied Problem 3.0.1 concerning the maximum likelihood degree
of scaled toric varieties from three different angles. First, in Section 3.1, we considered the
case of toric varieties with ML degree one. The toric fibre product construction gives rise
to new models with ML degree one. Our first main result, Theorem 3.1.8, gives an explicit
description of the Horn parametrisation of a toric fibre product. Moreover, we connect the
toric fibre product to geometric modelling. The second main result, Theorem 3.1.14, yields
a construction for a set of blending functions on a toric fibre product patch satisfying the
property of rational linear precision. A classification of toric varieties with ML deg one is
currently only known in the two-dimensional case; it is an interesting problem for future
work to extend this result to higher dimensional cases. The toric fibre product construction
is likely to play a crucial role in this.

In Section 3.2 we introduced the notion of Euler stratifications, and connect it to Prob-
lem 3.0.1. Besides structural results on Euler stratifications, we developed Algorithms 3
and 6 to compute such stratifications for projective and very affine hypersurface families,
respectively. This gives a complete computational answer to Problem 3.0.1. However, the
complexity of the situation quickly explodes, and our algorithms become computationally
infeasible. An interesting approach for future work is to compute tropicalisations of Euler
strata. We expect to find more efficient algorithms for the computation of these combina-
torial shadows. This also connects to work on tropical Severi varieties, see e.g. [DHT17].

Finally, Section 3.3 takes a parametric view on the ML degree. We connect this to
the theory of logarithmic derivations of arrangements (confer Theorem 3.3.12). The main
result, Theorem 3.3.1, provides a novel way to compute the ideal of the likelihood corre-
spondence. This is particularly easy if the arrangement is gentle. A main direction for
future studies is to prove that generic arrangement are gentle (Conjecture 3.3.41).

A central notion of this chapter was the ML degree, a critical point count measuring
the (algebraic) complexity of maximum likelihood estimation for a specific model. In the
next chapter on polynomial neural networks, we introduce a similar critical point count,
the learning degree of a polynomial neural network. It measures the complexity of the
optimisation landscape and informs the training process of the network.
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Chapter 4

Polynomial neural networks

Feedforward neural networks are a ubiquitous tool in machine learning, see e.g. [GBC16,
Ch. 6], [BN06, Ch. 5]. The nonlinearity in their activation functions allows modelling com-
plex phenomena effectively. Despite their empirical triumph, the underlying theoretical
behaviours of neural networks remain an open and active field of research. Polynomial
neural networks constitute a class of feedforward neural networks where the activation
function is given by exponentiation with an integer. Hence, the networks’ outputs are
polynomials in the input data. The set of all functions potentially learnable by the net-
work is then a semialgebraic set and amenable to the techniques of algebraic geometry.
In this chapter we focus on two main aspects: the expressivity (Section 4.2) and the opti-
misation process (Section 4.3) of a polynomial neural network. The former deals with the
question of which functions can be represented by the network in principle; the latter is
concerned with how many and what functions can be learned in a training process, e.g.
using gradient descent, after different initialisations.



4.1. Introduction

Over the past decade, neural networks have achieved remarkable success, primarily driven
by advancements in deep learning. With the increased computational power, availability
of large datasets, and algorithmic innovations, deep learning has led to groundbreaking
achievements in areas like image and speech recognition, natural language processing,
and autonomous systems. In addition, deep neural networks outperform many traditional
statistical models, significantly impacting fields such as healthcare and finance.

Various activation functions are studied to understand their role in introducing non-
linearity, affecting gradient propagation, and influencing computational efficiency. Poly-
nomial activation functions have gained interest for their ability to introduce higher-order
interactions between inputs, allowing networks to model complex, nonlinear phenomena
more effectively [OPP03]. Although feedforward neural networks with polynomial acti-
vation functions are well-known to be non-universal approximators [HSW89], there are
many practical tasks where architectures with polynomial activations have outperformed
other ones, especially in environments where data relationships are polynomial in nature.
In particular, polynomial neural networks have led to state-of-the-art results in engineering
tasks like face detection from cluttered images [HSHK03], image generation [CMB+20], 3D
shape recognition [YHN+21], as well as financial applications like forecasting trading sig-
nals [GHL11], uncertain natural frequency quantification [DNM+16], and estimating stock
closing indices [NM18]. However, the choice of degree and the potential for overfitting are
critical considerations in applying polynomial neural networks to practical tasks.

Compared to other low-degree activation functions, polynomial functions capture in-
tricate patterns within data without the need for additional layers, potentially reducing
model complexity and computational costs. In addition, common neural network activa-
tion functions, including sigmoid and ReLU, can be effectively approximated using ratios
of polynomials. Recent work also shows that fully-connected feedforward neural net-
works using ratios of polynomials as activation functions approximate smooth functions
more efficiently than ReLU networks [BNT20]. Our exploration in the realm of polynomial
networks lays the groundwork for further investigation of rational activation functions.

In this chapter, we perform an algebro-geometric study of neuromanifolds and their
Zariski closures, neurovarieties, following the previous work by [KTB19]. In Section 4.1,
we introduce polynomial neural networks, as well as their neuromanifolds and neurovari-
eties. Neuromanifolds provide a natural generalisation of the set of symmetric tensors of
bounded symmetric rank. This perspective is taken in Subsection 4.2.1 where we charac-
terise neuromanifolds for some shallow polynomial neural networks. In Subsection 4.2.2,
we describe different approaches for studying neurovarieties. These can be seen as good
approximations to neuromanifolds offering a more accessible framework for their algebro-
geometric study. The dimension of the neurovariety provides a measure for the expres-
sivity of the network. These dimensions are studied in Subsection 4.2.3. For a shallow
polynomial neural network with a single output unit, this corresponds to the Alexander–
Hirschowitz Theorem. In the deep case, we present conjectures supported by empirical
evidence. Finally, in Section 4.3, we study the optimisation process of a polynomial neural
network. We describe the complexity of the optimisation landscape by the learning degree
of the neurovariety. It provides an upper bound on the number of functions a network can
learn after a training process with different initialisations. We relate this number to the
Euclidean distance degree and compute it for a family of architectures. We provide code
for computations and experiments at the MathRepo code repository at [KLW24b].
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Recall the definition and notation of feedforward neural networks from Section 2.5. In
this chapter, we focus on monomial activations x 7→ xr. Then the network Fθ is a polynomial
map and the study of these networks is amenable to techniques from algebraic geometry.

The affine-linear map fl can be written as fl(x) = Wlx + bl , where Wl ∈ Rdl×dl−1 is
a linear map and bl ∈ Rdi . We are considering networks without biases to make the
polynomial map Fθ homogeneous. Let us summarise the setup in the following.

Definition 4.1.1. A polynomial neural network (PNN) pw with architecture

(d = (d0, d1, . . . , dL), r)

is a fully connected feedforward neural network

pw = WL ◦ σL−1 ◦WL−1 ◦ σL−2 ◦ · · · ◦ σ1 ◦W1 : Rd0 → RdL ,

where Wi ∈ Rdi×di−1 are linear maps and the activation functions

σi(x) = ρr(x) := (xr
1, . . . , xr

n)

are monomial. The number r is called the activation degree of pw. The parameters w are
given by the entries of the matrices Wi, i.e. w = (W1, W2, . . . , WL).

A PNN pw with architecture (d, r) is a homogeneous polynomial map of degree rL−1.
Hence, the associated parameter map Ψd,r maps an L-tuple of matrices (W1, W2, . . . , WL)
to a dL-tuple of homogeneous polynomials of degree rL−1 in d0 variables, i.e.

Ψd,r : Rd1×d0 × · · · ×RdL×dL−1 → (SymrL−1(Rd0))dL , w 7→ pw =
(

p(1)w , . . . , p(dL)
w

)T
.

We can identify elements in the image with their vectors of coefficients in Rn with
n = dL(

rL−1+d0−1
d0−1 ). Coordinates of this space will be denoted by c(j)

I so that c(j)
I is the

coefficient of the monomial xI in the polynomial p(j)
w (x); here, I is a multiindex in(

[d0]

rL−1

)
=
{

rL−1 element subsets of {1, 2, . . . , d0}
}

.

Definition 4.1.2. The image of Ψd,r is the neuromanifold Md,r. Its Zariski closure is the
neurovariety Vd,r, an affine variety inside (SymrL−1(Rd0))dL .

The neuromanifold Ψd,r is a semialgebraic set inside (SymrL−1(Rd0))dL , which means
that it is a finite union of sets that can be defined by polynomial equations and inequali-
ties. The observation that the neuromanifold Ψd,r is a semialgebraic set follows from the
Tarski–Seidenberg Theorem (see e.g. [BCR13, Thm. 1.4.2]) which states that the image of
a semialgebraic set under a polynomial map is again semialgebraic. The neurovariety can
be seen as an approximation to the neuromanifold which is much easier to describe. In
general, Zariski closures can be “far off” from the original space (viewed in the Euclidean
topology). For example, the dimension of the Zariski closure can increase. This is, however,
not the case for semialgebraic sets: the dimension of the neuromanifold and the dimension
of its neurovariety agree. Since the dimension of the neuromanifold is the primary mea-
sure for the network expressivity in Section 4.2, it is legitimate to study the neurovariety
instead. Moreover, the degree theory developed in Subsection 4.3.1 only works for Zariski
closed sets. Again, the neurovariety can be seen as a good approximation to the neuro-
manifold in terms of the complexity of the optimisation process. We reiterate the warning
that neuromanifolds are typically not smooth manifolds.

Increasing the widths of hidden layers gives a containment of neuromanifolds.
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Proposition 4.1.3. Let d = (d0, . . . , di, . . . , dL) and let d′ = (d0, . . . , d′i, . . . , dL) be a tuple which
differs from d precisely in the ith entry for 0 < i < L and assume d′i ≥ di. Then there is a
containmentMd,r ⊆Md′,r, and consequently also Vd,r ⊆ Vd′,r.

Proof. Let w = (W1, . . . , WL) be a parameter vector for the architecture d and pw ∈ Md,r
the corresponding polynomial network. Let w′ = (W ′1, . . . , W ′L) be the parameter vector
for the architecture d′ such that each W ′i has Wi as left-top submatrix and zeros elsewhere.
Then pw = pw′ ∈ Md′,r.

4.2. Expressivity
As the neuromanifoldMd,r is semialgebraic, it has the same dimension as its Zariski clo-
sure, Vd,r. In [KTB19], the dimension of Vd,r was proposed as a measure for the expressivity
of the network architecture (d, r).

Definition 4.2.1. An architecture (d, r) is filling if Vd,r = (SymrL−1(Rd0))dL . In this case, we
say thatMd,r is thick, i.e. it has positive Lebesgue measure.

The case of filling architectures is particularly interesting from a machine learning per-
spective as filling networks have the most expressive power: if Md,r = (SymrL−1(Rd0))dL ,
any target function in (SymrL−1(Rd0))dL can be represented exactly by the network. In the
case of non-filling architectures, a general target function can only be approximated by the
network. For more details on the learning process, see Section 2.5. Moreover, from an op-
timisation perspective it is advantageous to work with thick neuromanifolds as non-thick
neuromanifolds are non-convex, see [KTB19, Prop. 7].

Example 4.2.2. For architecture d = (2, 1, 1), r = 2 with input x = (x1, x2)T and weights

W1 =
(
w111 w112

)
, W2 =

(
w211

)
,

the network is
pw(x) = W2ρ2W1x =

(
w211(w111x1 + w112x2)2) .

There are three parameters in W1 and W2 which Ψ(2,1,1),2 maps to the quadric above
with dim(Sym2(R

2)) = 3 coefficients. Let c11, c12 and c22 be coordinates for this space,
representing the coefficients of x2

1, x1x2 and x2
2, respectively. The neuromanifold is a hyper-

surface defined by the quadratic equation c2
12 − c11c22 = 0, which is shown in Figure 4.1.

The neurovariety is equal to the neuromanifold, and hence it is not filling. See Lemma
4.2.7 for more details and generalisations. ♢

Example 4.2.3 ([KTB19], Example 3). For architecture d = (2, 2, 3), r = 2 with input
x = (x1, x2)T and parameters

W1 =

(
w111 w112
w121 w122

)
, W2 =

w211 w212
w221 w222
w231 w232

 ,

the network is

pw(x) = W2ρ2W1x =

w211(w111x1 + w112x2)2 + w212(w121x1 + w122x2)2

w221(w111x1 + w112x2)2 + w222(w121x1 + w122x2)2

w231(w111x1 + w112x2)2 + w232(w121x1 + w122x2)2

 .
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Figure 4.1: The neuromanifoldM(2,1,1),2 in Sym2(R
2) ∼= R3.

There are ten parameters in W1 and W2 which Ψ(2,2,3),2 maps to the triple of quadrics
above with dim(Sym2(R

2)3) = 9 coefficients. The neurovariety is an eight-dimensional
hypersurface defined by the single cubic equation

det

c(1)11 c(1)12 c(1)22

c(2)11 c(2)12 c(2)22

c(3)11 c(3)12 c(3)22

 = 0.

This implies that the architecture d = (2, 2, 3), r = 2 is not filling. For more details, see
Proposition 4.2.18 below. Note that in this caseMd,r ⊊ Vd,r, see Proposition 4.2.19. ♢

There is a naı̈ve expectation for the dimension of the neurovariety, namely the number
of parameters. However, one immediately observes a symmetry in the parameters for any
network architecture, called multi-homogeneity.

Lemma 4.2.4 ([KTB19, Lem. 13]). For all diagonal matrices Di ∈ Rdi×di and permutation matri-
ces Pi ∈ Zdi×di , where i = 1, . . . , L− 1, the parameter map Ψd,r returns the same network under
the transformation

W1 ← P1D1W1
W2 ← P2D2W2D−r

1 PT
1

W3 ← P3D3W3D−r
2 PT

2
...

WL ←WLD−r
L−1PT

L−1.

Hence, a generic fibre of Ψd,r has dimension at least ∑L−1
i=1 di. We call the number of

parameters subtracted by this dimension the expected dimension of the neurovariety.

Definition 4.2.5. We define the expected dimension of the neurovariety Vd,r to be

edim(Vd,r) := min

{
dL +

L−1

∑
i=0

(didi+1 − di+1), dL

(
d0 + rL−1 − 1

rL−1

)}
.
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d dim edim amb dim ideal Md,2 = Vd,2?
(1,1,1) 1 1 1 ⟨0⟩ yes
(1,1,2) 2 2 2 ⟨0⟩ yes
(1,1,3) 3 3 3 ⟨0⟩ yes

(1,2,1) 1 1 1 ⟨0⟩ yes
(1,2,2) 2 2 2 ⟨0⟩ yes
(1,2,3) 3 3 3 ⟨0⟩ yes

(1,3,1) 1 1 1 ⟨0⟩ yes
(1,3,2) 2 2 2 ⟨0⟩ yes
(1,3,3) 3 3 3 ⟨0⟩ yes

(2,1,1) 2 2 3 determinantal, Lemma 4.2.8 yes, Lemma 4.2.8
(2,1,2) 3 3 6 determinantal, Lemma 4.2.8 yes, Lemma 4.2.8
(2,1,3) 4 4 9 determinantal, Lemma 4.2.8 yes, Lemma 4.2.8

(2,2,1) 3 3 3 ⟨0⟩ yes, Lemma 4.2.7
(2,2,2) 6 6 6 ⟨0⟩ no, Proposition 4.2.19
(2,2,3) 8 8 9 determinantal, Proposition 4.2.18 no, Proposition 4.2.19

(2,3,1) 3 3 3 ⟨0⟩ yes, Lemma 4.2.7
(2,3,2) 6 6 6 ⟨0⟩ yes, Proposition 4.2.12
(2,3,3) 9 9 9 ⟨0⟩ yes, Proposition 4.2.12

(3,1,1) 3 3 6 determinantal, Lemma 4.2.8 yes, Lemma 4.2.8
(3,1,2) 4 4 12 determinantal, Lemma 4.2.8 yes, Lemma 4.2.8
(3,1,3) 5 5 18 determinantal, Lemma 4.2.8 yes, Lemma 4.2.8

(3,2,1) 5 6 6 determinantal, Lemma 4.2.7 yes, Lemma 4.2.7
(3,2,2) 8 8 12 determinantal, Example 4.2.6 no, Remark 4.2.20
(3,2,3) 10 10 18 Example 4.2.6 no, Remark 4.2.20

(3,3,1) 6 6 6 ⟨0⟩ yes, Lemma 4.2.8
(3,3,2) 12 12 12 ⟨0⟩ no, Lemma 4.2.9
(3,3,3) 15 15 18 Example 4.2.21 no, Lemma 4.2.9

Table 4.1: Properties of neurovarieties for shallow polynomial neural networks with widths
di ∈ [3] and activation degree r = 2.

By Lemma 4.2.4, dim(Vd,r) ≤ edim(Vd,r). The difference edim(Vd,r) − dim(Vd,r) is the
defect of Vd,r. If the defect is nonzero Vd,r is called defective. We refer to

dim((SymrL−1(Rd0))dL) = dL

(
d0 + rL−1 − 1

rL−1

)
as the ambient dimension of Vd,r.

In Table 4.1 we compute the ideal of the neurovariety and its dimension for shallow
polynomial neural networks with widths di ∈ [3] and activation degree r = 2. We also
compare the neurovariety with the neuromanifold.

Most ideals of neurovarieties in Table 4.1 are described by results in the upcoming
subsections. The ideals for all but two cases (d = (3, 2, 3) and d = (3, 3, 3)) in the table
are determinantal. In general, we expect most neurovarieties to be non-determinantal.
Among the table, only the neurovariety for the architecture d = (3, 2, 1) does not have
expected dimension. The following example describes the cases that are not explained by
any results in the rest of the chapter.
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d r assumptions result
(d0, d1, 1) 2 Lemma 4.2.7
(d0, 1, d2) 2 Lemma 4.2.8
(d0, d0, d2) 2 d0, d2 ≥ 2 Lemma 4.2.9
(d0, 1, d2) r ∈N Lemma 4.2.11
(d0, d1, d2) r ∈N d1 ≥ (r+d0−1

r ) Proposition 4.2.12
(2, d1, 1) 3 d1 ≥ 2 Corollary 4.2.16
(2, d1, 1) 4 d1 ≥ 3 Corollary 4.2.16
(2, d1, 1) 5 d1 ≥ 3 Corollary 4.2.16
(3, d1, 1) 4 d1 ≥ 6 Corollary 4.2.17
(3, d1, 1) 5 d1 ≥ 7 Corollary 4.2.17
(4, d1, 1) 3 d1 ≥ 5 Corollary 4.2.17

Table 4.2: An overview of architectures for which we give results about their neuromani-
folds in Subsection 4.2.1.

Example 4.2.6. The ideal of the neurovariety for the architecture d = (3, 2, 2), r = 2 is
determinantal, and it is generated by the 3× 3 minors of c(1)11

1
2 c(1)12

1
2 c(1)13 c(2)11

1
2 c(2)12

1
2 c(2)13

1
2 c(1)12 c(1)22

1
2 c(1)23

1
2 c(2)12 c(2)22

1
2 c(2)23

1
2 c(1)13

1
2 c(1)23 c(1)33

1
2 c(2)13

1
2 c(2)23 c(2)33

 .

The ideal of the neurovariety for the architecture d = (3, 2, 3), r = 2 contains the ideal
Idet generated by the 3× 3 minors of the following 3× 9 matrix: c(1)11

1
2 c(1)12

1
2 c(1)13 c(2)11

1
2 c(2)12

1
2 c(2)13 c(3)11

1
2 c(3)12

1
2 c(3)13

1
2 c(1)12 c(1)22

1
2 c(1)23

1
2 c(2)12 c(2)22

1
2 c(2)23

1
2 c(3)12 c(3)22

1
2 c(3)23

1
2 c(1)13

1
2 c(1)23 c(1)33

1
2 c(2)13

1
2 c(2)23 c(2)33

1
2 c(3)13

1
2 c(3)23 c(3)33

 .

However, the ideal of V(3,2,2),2 not equal to Idet. The former is minimally generated by 94
polynomials. The dimension of V(Idet) is eleven while V(3,2,2),2 has dimension ten. ♢

4.2.1. Neuromanifolds and symmetric tensor decomposition

In this subsection, we investigate the relationship between shallow PNNs and symmetric
tensor decompositions. Recall the definitions of symmetric tensors and symmetric tensor
rank from Subsection 2.3.1. Building on this connection, we derive results for neuroman-
ifolds for some shallow PNNs. This subsection has two parts: firstly, we focus on neuro-
manifolds with activation degree r = 2. Afterwards we present results on neuromanifolds
for general r ∈N. An overview of the results in this subsection can be found in Table 4.2.

Consider a PNN with architecture d = (d0, d1, 1). ThenMd,r consists of homogeneous
polynomials of degree r in d0 many variables that can be represented as a linear combina-
tion of d1 many linear forms raised to the rth power. We should emphasise here that the
linear combinations are taken over the real numbers. There is a bijection between the set
of homogeneous polynomials of degree r in d0 many variables and the set of order-r sym-
metric tensors of format d0 × d0 × · · · × d0 as explained in Subsection 2.3.1. Formulated in
the language of tensors, the neuromanifold Md,r consists of order-r symmetric tensors of
format d0 × d0 × · · · × d0 with real symmetric rank ≤ d1.
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Neuromanifolds for r = 2

Lemma 4.2.7. The neuromanifold for the architecture d = (d0, d1, 1), r = 2 consists of (d0 × d0)
symmetric matrices 

c11
1
2 c12 · · · 1

2 c1d0
1
2 c12 c22 · · · 1

2 c2d0
...

...
. . .

...
1
2 c1d0

1
2 c2d0 · · · cd0d0

 (4.2.1)

of rank at most d1. It is equal to its neurovariety and the ideal of the neurovariety is generated by
all d1 + 1 minors of the symmetric matrix. The architecture is filling if and only if d1 ≥ d0.

Proof. The neural network with architecture d = (d0, d1, 1), r = 2 and weights w is

pw(x) = w211(w111x1 + . . . + w11d0 xd0)
2 + . . . + w21d1(w1d11x1 + . . . + w1d1d0 xd0)

2.

Each of the summands of pw(x) corresponds to a rank-one symmetric matrix. Since there
are d1 summands, their sum gives a symmetric matrix (4.2.1) of rank at most d1.

The next lemma is a special case of Lemma 4.2.11, and we state it here separately as
the special case is used in Table 4.1.

Lemma 4.2.8. The neuromanifold for the architecture d = (d0, 1, d2), r = 2 consists of d2 tuples
of d0 × d0 symmetric matrices of rank at most one such that all the rank-one matrices are multiples
of each other. The neuromanifold is equal to the neurovariety and the ideal of the neurovariety is
generated by the 2× 2 minors of

c(1)11
1
2 c(1)12 · · · 1

2 c(1)1d0
· · · c(d2)

11
1
2 c(d2)

12 · · · 1
2 c(d2)

1d0
1
2 c(1)12 c(1)22 · · · 1

2 c(1)2d0
· · · 1

2 c(d2)
12 c(d2)

22 · · · 1
2 c(d2)

2d0
...

...
. . .

... · · ·
...

...
. . .

...
1
2 c(1)1d0

1
2 c(1)2d0

· · · c(1)d0d0
· · · 1

2 c(d2)
1d0

1
2 c(d2)

2d0
· · · c(d2)

d0d0

 .

The next result was communicated to us by Maksym Zubkov and Leonie Kayser.

Lemma 4.2.9. Let d0, d2 ≥ 2, then for architectures d = (d0, d0, d2), r = 2, the parameter map
Ψd,r : Rd0×d0 ×Rd2×d0 → (Sym2(R

d0))d2 is not surjective.

Proof. We will first prove the statement for d = (d0, d0, 2), r = 2. Assume to the contrary
that the map Ψd,r is surjective. For i ∈ [d0], we write ℓi = (W1x)i = w1i1x1 + · · ·+ w1id0 xd0 .
For any pair of quadratic forms (q1, q2) ∈ Sym2(R

d0)× Sym2(R
d0), there exists w with

Ψd,r(w) =

(
w211ℓ

2
1 + · · ·+ w21d0ℓ

2
d0

w221ℓ
2
1 + · · ·+ w22d0ℓ

2
d0

)
=

(
ℓ1w211ℓ1 + · · ·+ ℓd0 w21d0ℓd0

ℓ1w221ℓ1 + · · ·+ ℓd0 w22d0ℓd0

)
=

(
xTWT

1 D1W1x
xTWT

1 D2W1x

)
,

where Di is the diagonal matrix with w2ij for i = 1, 2 and j = 1, . . . , d0. So, if A1 and A2
are the corresponding matrices for quadratic forms q1 and q2, then we would have

A1 = WT
1 D1W1, A2 = WT

1 D2W1. (4.2.2)

Hence, the two matrices A1 and A2 are simultaneously congruent to diagonal matrices.
Suppose this were true. Then the generalised characteristic polynomial (confer [HJ85,
2.4.P15]) pA1,A2(t1, t2) := det(t1A1 + t2A2) can be written as

pA1,A2(t1, t2) = det(W1)
2

d0

∏
j=1

(w21jt1 + w22jt2),
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i.e. it decomposes into linear factors. Over R, one can easily find examples where this
is violated. Therefore, Ψd,r is not surjective. If d2 ≥ 2, this corresponds to simultaneous
diagonalisation by congruence of d2 many matrices which is again not always possible.

Remark 4.2.10. If one of the matrices A1 or A2 from (4.2.2) above is definite, then they
are in fact simultaneously congruent to diagonal matrices, see [HJ85, Thm. 7.6.1], so such
pairs lie in the neuromanifoldMd,r with d and r as in Lemma 4.2.9.

Neuromanifolds for r ∈N

Lemma 4.2.11. The neuromanifold for the architecture d = (d0, 1, d2), r ∈N consists of d2 order-
r (d0 × d0 × · · · × d0) symmetric tensors of rank at most one such that all the rank-one tensors
are multiples of each other. The neuromanifold equals the neurovariety and its ideal is generated
by the 2× 2 minors of the flattenings of the (d0 × · · · × d0 × d0d2) tensor that is obtained from
combining the d2 (d0 × d0 × · · · × d0) symmetric tensors along the last index.

Proof. The neural network with architecture d = (d0, 1, d2), r ∈N and weights w is

pw(x) =


w211(w111x1 + . . . + w11d0 xd0)

r

w221(w111x1 + . . . + w11d0 xd0)
r

...
w2d21(w111x1 + . . . + w11d0 xd0)

r

 .

The form (w111x1 + . . . + w11d0 xd0)
r corresponds to an order-r rank-one symmetric tensor.

The ith component of pw(x) is the symmetric tensor multiplied by the constant w2i1. This
proves the first statement. For the second statement, we note that combining the rank-one
tensors to a d0 × · · · × d0 × d0d2 tensor along the last index gives another rank-one tensor.
Moreover, any d0 × · · · × d0 × d0d2 tensor of rank one such that each of the d2 (d0 × d0 ×
· · · × d0)-subtensors is symmetric can be obtained from symmetric (d0 × d0 × · · · × d0)
rank-one tensors that are multiples of each other. The second statement follows from the
result that the ideal of the tensors of rank at most one is generated by the 2× 2 minors of
flattenings, see [Lan11, §3.4].

Proposition 4.2.12. Let d = (d0, d1, d2) with d1 ≥ (r+d0−1
r ). Then the neuromanifold itself is

filling, i.e.Md,r equals its ambient space (Symr(R
d0))d2 .

Proof. Let N := (r+d0−1
r ). Write the coefficients of pw = Ψd,r(w) as

C =


(c(1)I )I

...
(c(d2)

I )I

 =

w211 w212 . . . w21d1
...

...
. . .

...
w2d21 w2d22 . . . w2d2d1


 (W1,1)

I

...
(W1,d1)

I

 ,

where I ranges over all multiindices in ([d0]
r ) and (W1,i)

I denotes the row consisting of
all degree-r monomials formed by entries of the ith row of W1 with the corresponding
multinomial coefficients. We want to show that any real d2 × N matrix C can be written
in this form. If d1 ≥ N then for a general choice of parameters W1 this matrix has a
left-inverse with real entries and hence the system above can be solved over the reals.

Definition 4.2.13. Let K be R or C and let

Sn
d,k(K) = {T ∈ Symd(K

n) : symmetric rank of T is k}.

If Sn
d,k(K) ⊆ Symd(K

n) has non-empty interior with respect to the Euclidean topology, k is
called a typical symmetric rank for order-d tensors of dimension n.
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Over the complex numbers, there is a unique typical symmetric rank which is called
the generic symmetric rank. However, over the real numbers there can be multiple typical
symmetric ranks. In the following we will write Sn

d,k for Sn
d,k(R). A neuromanifold Md,r

having non-empty interior with respect to the Euclidean topology implies that the archi-
tecture (d, r) is filling. The importance of typical symmetric ranks for PNNs comes from
the following fact which is a consequence of the discussions above and the inclusion

Sn
d,k ⊆M(n,k,1),d.

Theorem 4.2.14. If k is a typical symmetric rank for order-d tensors of dimension n then the
architecture d = (n, k, 1), r = d is filling, i.e. Vd,r = Symd(R

n). Moreover, if there are two
typical symmetric ranks k < k′ then clEucl(M(n,k,1),d) ⊊ Symd(R

n) where clEucl denotes the
closure with respect to the Euclidean topology.

Let us consider the case n = 2 first; this is the setting of the paper [CO12]. We sum-
marise their findings below.

Theorem 4.2.15 ([CO12, Prop. 2.2 & Main Theorem]).

1. S2
3,k has non-empty interior only for k ∈ {2, 3}.

2. S2
4,k has non-empty interior only for k ∈ {3, 4}.

3. S2
5,k has non-empty interior only for k ∈ {3, 4, 5}.

Using these results we obtain the following as a consequence of Theorem 4.2.14.

Corollary 4.2.16.

1. d = (2, d1, 1), r = 3 is filling for d1 ≥ 2 and

clEucl(M(2,2,1),3) ⊊ clEucl(M(2,3,1),3) = Sym3(R
2).

2. d = (2, d1, 1), r = 4 is filling for d1 ≥ 3 and

clEucl(M(2,3,1),4) ⊊ clEucl(M(2,4,1),4) = Sym4(R
2).

3. d = (2, d1, 1), r = 5 is filling for d1 ≥ 3 and

clEucl(M(2,3,1),5) ⊊ clEucl(M(2,4,1),5) ⊊ clEucl(M(2,5,1),5) = Sym3(R
2).

Some similar results on typical symmetric ranks are also known for higher dimensional
tensors though the difficulty increases quickly. We summarise some consequences below.

Corollary 4.2.17.

1. d = (3, d1, 1), r = 4 is filling for d1 ≥ 6 and

clEucl(M(3,6,1),4) ⊊ clEucl(M(3,7,1),4) ⊆ clEucl(M(3,8,1),4) = Sym4(R
3).

2. d = (3, d1, 1), r = 5 is filling for d1 ≥ 7 and

clEucl(M(3,7,1),5) ⊊ clEucl(M(3,8,1),5) ⊆ · · · ⊆ clEucl(M(3,13,1),5) = Sym5(R
3).
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3. d = (4, d1, 1), r = 3 is filling for d1 ≥ 5 and

clEucl(M(4,5,1),3) ⊊ clEucl(M(4,6,1),3) = Sym3(R
4)

Proof. The statements follow from Theorem 4.2.14 and [BBO18, Theorem 1.2].

The algebraic boundary ∂alg(M) of a set M is the Zariski closure of its topological
boundary ∂(M). Little is known about the algebraic boundaries in the cases considered
above. Theorem 4.1 in [MMSV16] implies that the algebraic boundary ∂alg(M(3,6,1),4) has
an irreducible component of degree 51.

4.2.2. Neurovarieties
In this subsection, we describe different approaches to studying neurovarieties. We start by
studying the fibres of a parameter map to characterise the neurovariety V(2,2,d2),2 (Proposi-
tion 4.2.18) and partially the neuromanifoldM(2,2,d2),2 (Proposition 4.2.19). We use Grass-
mannians to describe the neurovariety V(3,3,3),2 (Example 4.2.21) and apply the Hilbert–
Burch Theorem to study V(2,2,2,2),2 (Example 4.2.22).

Proposition 4.2.18. The neurovariety V(2,2,d2),2 is the vanishing locus of all 3× 3 minors of

Cd2 =


c(1)11 c(1)12 c(1)22

...
...

...
c(d2)

11 c(d2)
12 c(d2)

22

 =

w211 w212
...

...
w2d21 w2d22

(w2
111 2w111w112 w2

112
w2

121 2w121w122 w2
122

)
.

Proof. Clearly V(2,2,d2),2 ⊆ V(⟨3 × 3 minors of Cd2⟩) as rk(Cd2) ≤ 2. The variety V(⟨3 ×
3 minors of Cd2⟩) is irreducible and dim(V(⟨3 × 3 minors of Cd2⟩)) = 2d2 + 2, see e.g.
[BV06, Proposition 1.1]. Consider the parameter map and the corresponding neurovariety

Ψ(2,2,d2),2 : R2×2 ×Rd2×2︸ ︷︷ ︸
dim 2d2+4

→ (Sym2(R
2))d2 , V(2,2,d2),2 = im(Ψ(2,2,d2),2).

The fibres of Ψ(2,2,d2),2 over V(2,2,d2),2 are at least two-dimensional by Lemma 4.2.4. For d2 =
2, one can computationally check that over a generic matrix Cd2 the fibre is 2-dimensional.
Since generic fibres are at least 2-dimensional, they are exactly 2-dimensional. For the case
d2 > 2, note that by setting the parameters w211, w212, . . . , w2(d2−1)1, w2(d2−1)2 to zero and
varying w2d21, w2d22, we obtain a two-dimensional family not contained in the embedding
of M(2,2,d2−1),2 into M(2,2,d2),2. As the dimension of the parameter space increases by two
when passing from d2 − 1 to d2, the generic fibre is two-dimensional by induction. Thus,
dim(V(2,2,d2),2) = 2d2 + 2 and moreover V(2,2,d2),2 is irreducible, hence

V(2,2,d2),2 = V(⟨3× 3 minors of Cd2⟩).

Proposition 4.2.19. For d = (2, 2, d2) (d2 ≥ 2) and r = 2, the Euclidean closure of Md,r is
strictly included in Vd,r. In the case d = (2, 2, 2), we have

C =

(
c(1)11 c(1)12 c(1)22

c(2)11 c(2)12 c(2)22

)
∈ M(2,2,2),2

if and only if
M1,3(C)2 ≥ M1,2(C)M2,3(C),
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where Mi,j(C) is the 2× 2 minor of C obtained by taking the determinant of the ith and jth column.
In particular, the algebraic boundary ofM(2,2,2),2 is given by

∂algM(2,2,2),2 = V(M1,3(C)2 −M1,2(C)M2,3(C)).

Proof. First consider the case d = (2, 2, 2). We are looking for conditions on a matrix
A ∈ R2×3 such that there exists G ∈ GL(2, R) with(

g11 g12
g21 g22

)(
a11 a12 a13
a21 a22 a23

)
=

(
w2

111 2w111w112 w2
112

w2
121 2w121w122 w2

122

)
. (4.2.3)

We consider two cases: when both w111, w121 are nonzero and when at least one of them
is zero. If w111 and w121 are nonzero, then after rescaling, without loss of generality we
can assume w111 = w121 = 1. Each matrix entry in (4.2.3) yields a polynomial equation;
these generate an ideal I in the polynomial ring R[g11, . . . , g22, w112, w122, a11, . . . , a23]. Two
generators in a Gröbner basis of I with respect to lexicographic ordering are

w2
1i2a11a22 − w2

1i2a12a21 − 2w1i2a11a23 + 2w1i2a13a21 + a12a23 − a13a22, (4.2.4)

where i ∈ {1, 2}. These quadratic equations in w1i2 have discriminant

∆ = M1,3(A)2 −M1,2(A)M2,3(A),

where A is the 2× 3 matrix with entries aij from (4.2.3). The denominator of the quadratic
formula for (4.2.4) is M1,2(A). Therefore, real solutions to (4.2.3) with w111, w121 nonzero
exist if and only if M1,3(A)2 ≥ M1,2(A)M2,3(A) and M1,2(A) ̸= 0.

When at least one w1i1 = 0, then, possibly after rescaling, the Gröbner basis of I
with respect to the lexicographic ordering contains w2

i12a11a22 − w2
i12a12a21. This implies

wi12 = 0 or M1,2(A) = 0. The former condition implies M1,2(A) = 0, so we do not have
to consider it separately. When M1,2(A) = 0, the inequality M1,3(A)2 ≥ M1,2(A)M2,3(A)
is automatically satisfied. Therefore, real solutions to (4.2.3) with at least one of w111, w121
zero exist if and only if M1,3(A)2 ≥ M1,2(A)M2,3(A) and M1,2(A) = 0. Combining the two
cases gives that real solutions to (4.2.3) exist if and only if M1,3(A)2 ≥ M1,2(A)M2,3(A).

As this inequality remains unchanged after multiplying A with a 2× 2 matrix (both
sides get multiplied by the squared determinant of the matrix which is positive), we con-
clude C ∈ M(2,2,2),2 if and only if M1,3(C)2 ≥ M1,2(C)M2,3(C).

In the case d2 > 2, it is clear that at least for any two rows i, j of C, the inequality

M1,3(Ci,j)
2 ≥ M1,2(Ci,j)M2,3(Ci,j)

needs to hold. Thus, we get a full-dimensional set of points in Vd,r \Md,r, hence

clEucl(Md,r) ⊊ Vd,r.

Remark 4.2.20. For example, if A =
( a ⋆ −a

b ⋆ −b
)

in the proof of Proposition 4.2.19, then the
equation (

g11 g12
g21 g22

)(
a ⋆ −a
b ⋆ −b

)
=

(
w2

111 2w111w112 w2
112

w2
121 2w121w122 w2

122

)
does not have a solution. This example can be extended to any architecture d = (d0, 2, d2)
with d0, d2 ≥ 2 and activation degree r = 2 to show thatMd,r ̸= Vd,r.

In the rest of the subsection, we use more advanced tools from algebraic geometry to
compute neurovarieties. A naı̈ve elimination approach fails to compute these varieties.
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Example 4.2.21. Consider the architecture d = (3, 3, 3), r = 2; the image of Ψd,r consists
of three linear combinations of three squares of linear forms in three variables. Let us take
a 3× 6 matrix representing the embedding of P2

x ×P2
y ×P2

z via the degree two Veronese
map (with corresponding scaling) into P5 ×P5 ×P5:x2

0 2x0x1 2x0x2 x2
1 2x1x2 x2

2
y2

0 2y0y1 2y0y2 y2
1 2y1y2 y2

2
z2

0 2z0z1 2z0z2 z2
1 2z1z2 z2

2


By taking all the 3× 3 minors (20 in total) of this matrix, we get an embedding into the
Grassmannian Gr(3, 6) in its Plücker coordinates. The ideal of this variety in Plücker
coordinates can be found using elimination. Its dimension is six and its degree is 57. Now
for each of the 20 Plücker coordinates we substitute a 3× 3 minor of a 3× 6 matrix of
unknowns, where each unknown represents a coefficient of a degree two monomial (we
view P5 as the space of all homogeneous quadrics in three variables):

C =

c(1)11 c(1)12 . . . c(1)33

c(2)11 c(2)12 . . . c(2)33

c(3)11 c(3)12 . . . c(3)33


The resulting ideal I gives rise to a variety X = V(I). This variety has two irreducible
components: one is given by the vanishing of all 3 × 3 minors of C, the other is the
neurovariety V(3,3,3),2 embedded into P5

c(1)
× P5

c(2)
× P5

c(3)
. The codimension of V(3,3,3),2 ⊆

P5
c(1)
×P5

c(2)
×P5

c(3)
is three, hence the affine dimension is dim(Vd,r) = 18− 3 = 15.

The first part of the computation can be found in [BS11]; we implemented the whole
procedure and made it available at [KLW24b]. ♢

Now consider the architecture (d = (2, 2, 2, 2), r = 2). We expect that Vd,r has dimen-
sion eight and thus has codimension two in (Sym4(R

2))2. Therefore, we can hope that by
the Hilbert–Burch Theorem (Theorem 2.3.5) we can find a matrix whose minors generate
the ideal of Vd,r. Again, we work in projective space, i.e. we consider Vd,r ⊆ P4

c(1) ×P4
c(2) .

The following example was communicated to us by Bernd Sturmfels.

Example 4.2.22. One finds that the coordinate ring of V(2,2,2,2),2 ⊆ P4
c(1) × P4

c(2) admits a
Hilbert–Burch resolution. Therefore, the ideal defining V(2,2,2,2),2 is generated by the 5× 5
minors of the matrix

c(2)1112 −c(2)1111 0 c(1)1112 −c(1)1111 0
4c(2)1122 −c(2)1112 8c(2)1111 4c(1)1122 −c(1)1112 8c(1)1111

8c(2)1222 0 8c(2)1112 8c(1)1222 0 8c(1)1112

8c(2)2222 c(2)1222 4c(2)1122 8c(1)2222 c(1)1222 4c(1)1122

0 c(2)2222 c(2)1222 0 c(1)2222 c(1)1222

 . ♢

4.2.3. Dimension
Determining dimensions of neurovarieties is a difficult task and there exists a wide range
of open conjectures in this direction. A classical result is the Alexander–Hirschowitz Theo-
rem; already conjectured in the late 19th century, the proof was completed about a century
later in 1995. Here is a formulation in the language of PNNs.
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Theorem 4.2.23 (Alexander–Hirschowitz [AH95]). If d = (d0, d1, 1), Vd,r attains the expected
dimension min{d0d1, (d0+r−1

r )}, except for the following cases:

1. r = 2, 2 ≤ d1 < d0,

2. r = 3, d0 = 5, d1 = 7 where dim(V(5,7,1),3) = 34 (defect 1),

3. r = 4, d0 = 3, d1 = 5 where dim(V(3,5,1),4) = 14 (defect 1),

4. r = 4, d0 = 4, d1 = 9 where dim(V(4,9,1),4) = 34 (defect 1),

5. r = 4, d0 = 5, d1 = 14 where dim(V(5,14,1),4) = 69 (defect 1).

It was conjectured that the neurovariety attains the expected dimension for large acti-
vation degree. Compare this for example with the Alexander–Hirschowitz Theorem which
tells us there exist no defective single-output two-layer neurovarieties with activation de-
gree r ≥ 5. The conjecture appeared as a theorem in [KTB19], but a mistake in the proof
was pointed out by Theo Elenius in his Bachelor thesis. After the article [KLW24a] (on
which this chapter is based) first appeared as a preprint, the conjecture has been proven
in [FRWY24, Thm. 12] and is stated precisely as follows.

Theorem 4.2.24. For any fixed widths d = (d0, . . . , dL) with di > 1 for i = 1, . . . , L− 1, there
exists r̃ = r̃(d) such that whenever r > r̃, the neurovariety Vd,r attains the expected dimension.

It is, however, not true that Vd,r being defective implies that Vd,r′ is defective for all r′ <
r. For example, V(5,7,1),3 has defect one whereas V(5,7,1),2 is non-defective. The assumption
di > 1 for i = 1, . . . , L− 1 in the theorem is necessary as is shown in the following example.

Example 4.2.25. Consider the widths d = (2, 1, 2, 1). We claim that for any r > 1, Vd,r has
defect one, i.e. dim(Vd,r) = 2. Indeed, observe that the parameter map Ψd,r is given by

x 7→ (w111x1 + w112x2)
r 7→

(
wr

211(w111x1 + w112x2)r2

wr
221(w111x1 + w112x2)r2

)
7→ (w311wr

211 + w312wr
221)(w111x1 + w112x2)

r2
.

As all weights coming from the last two layers can be factored out, we get that Vd,r
∼=

V(2,1,1,1),r. The latter neurovariety is immediately seen to have dimension two. This argu-
ment generalises to the following statement. ♢

Proposition 4.2.26. Let d0 ∈ Nn0 and d2 ∈ Nn2 . For d = (d0, 1, d2, d3), the neuromanifold
Md,r is equal toM(d0,1,1,d3),r for any r. In particular, for d3 = 1, dim(Md,r) = dim(M(d0,1),r).

Proof. Fix parameters w = (W1, . . . , WL). Let p = Ψ(d0,1),r(π1(w)) and q = Ψ(1,d2,1)(π2(w)),
where π1 denotes the projection to the parameter space corresponding to the first n0 + 1
layers, and π2 denotes the projection to the remaining parameters. Then pw(x) factors as a
composition pw(x) = (q ◦ p)(x). The polynomial q is a single-input neural network, hence
we can write (q ◦ p)i(x) as a product αi(π2(w)) · p(x)rn2 where αi(π2(w)) only depends on
weights corresponding to the last n2 + 2 layers and thus

Md,r = {(αi · prn2 )i : αi ∈ R, p ∈ M(d0,1),r}.

The latter set is by definition equal to M(d0,1,1,d3),r. In the case d3 = 1, its dimension is
equal to dim(M(d0,1),r).
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Remark 4.2.27. Proposition 4.2.26 allows to give a strong bound on the dimension ofMd,r
for widths d = (d0, 1, d2, d3):

dim(Md,r) = dim(Md0,1,1,d3 , r) ≤ edim(M(d0,1,1,d3),r) = dim(Md0,r) + d3 − 1.

If d0 > 1, the RHS is strictly less than the ambient dimension ofMd,r which is d3(
rL−1+d0−1

rL−1 ),
where d0 is the width of the input layer. Hence, the width one at the (n0 + 1)st layer is an
asymptotic bottleneck, i.e. the architecture is not filling regardless of adding more layers or
changing the widths of all layers except the input and (n0 + 1)st layer [KTB19, Def. 18].

Remark 4.2.28. For d = (d0, 1, d2, 1), the neuromanifoldMd,r is equal toM(d0,1,1,1),r for any
r. In particular, dim(Md,r) = d0. This allows to compute the dimension of many defective
neurovarieties. For example, dim(V(3,1,5,1),3) = 3 and therefore V(3,1,5,1),3 has defect 4.

In contrast to the asymptotic statement for large activation degree in Theorem 4.2.24,
we also conjecture the following.

Conjecture 4.2.29. Let d = (d0, d1, . . . , dL) be a non-increasing sequence with dL > 1. Then for
any r, the neurovariety Vd,r attains the expected dimension.

We verified this conjecture using Algorithm 1 described in Section 4.1 and the para-
graph below Conjecture 4.2.33 for four- and five-layer PNNs with widths up to three and
activation degree up to five, see [KLW24b]. In the context of feedforward neural networks
with ReLU activation the analogous statement has been proven [GLMW22, Thm. 8.11].

Using Lemma 4.2.4, one can deduce the following recursive dimension bound.

Proposition 4.2.30 ([KTB19, Prop. 17]). For any r ∈ N, d = (d0, . . . , di, . . . , dL) and i ∈
{1, . . . , L− 1}, we have

dim(Vd,r) ≤ dim(V(d0,...,di),r) + dim(V(di ,...,dL),r)− di.

Corollary 4.2.31. Let d̃ = (d0, . . . , di−1, d, dj+1, . . . , dL), where d = (di, di+1, . . . , dj) is an
architecture such that Vd,r is defective for some r > 0. Here, we allow i = 0 or j = L. Suppose Vd̃,r
is not filling, then Vd̃,r is defective.

Proof. It follows from Proposition 4.2.30 that

dim(Vd̃,r) ≤ dim(V(d0,...,di),r) + dim(Vd,r) + dim(V(dj,...,dL),r)− di − dj (4.2.5)

where dim(V(d0,...,di),r) or dim(V(dj,...,dL),r) might not appear in the sum above. By Defini-
tion 4.2.5, the expected dimension is defined as

edim(Vd,r) = min

{
dL +

L−1

∑
i=0

(didi+1 − di+1), dL

(
d0 + rL−1 − 1

rL−1

)}
.

Since dim(Vd,r) < edim(Vd,r), it follows from equation (4.2.5) that

dim(Vd̃,r) < dL +
i−1

∑
α=0

(dαdα+1 − dα+1) +
j−1

∑
β=i

(dβdβ+1 − dβ+1) +
L

∑
γ=j

(dγdγ+1 − dγ+1)

= dL +
L−1

∑
α=0

(dαdα+1 − dα+1),

where ∑i−1
α=0(dαdα+1 − dα+1) or ∑L

γ=j(dγdγ+1 − dγ+1) might not appear in the sum above.
Since Vd̃,r is non-filling, it follows directly that Vd̃,r is defective.
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Remark 4.2.32. The converse to this statement is not true. For example, consider d =
(2, 2, 1, 2), r = 2. Then Vd,r has defect one, but both V(2,2,1),2 and V(2,1,2),2 are non-defective.

Let ≼ be the partial order on the set of widths induced by coordinatewise comparison.
The following conjecture suggests a unimodal distribution of layer widths within a neural
network is efficient. In the realm of machine learning theory, this architectural pattern is
commonly believed to allow the network to initially expand its capacity for feature repre-
sentation, enabling the network to capture intricate patterns within the data. As the layers
narrow, heuristically, the network would refine these features into more sophisticated rep-
resentations suitable for making predictions. The conjecture agrees with this heuristic.

Conjecture 4.2.33 ([KTB19], Conj. 12). Fix L, d0, dL and r; any minimal (w.r.t. ≼) vector of
widths d = (d0, d1, . . . , dL) such that the architecture Vd,r is filling, is unimodal, i.e. there exists
i ∈ {0, 1, . . . , L} such that (d0, . . . , di) is weakly increasing and (di, . . . , dL) is weakly decreasing.

To compute the dimension of a neurovariety for a fixed architecture it is advantageous
to employ the backpropagation algorithm (Algorithm 1). This algorithm is commonly used
in machine learning applications to compute the gradient in the update rule (2.5.3) of the
gradient descent algorithm. One can also use it to compute the dimension of a neurova-
riety. This approach provides an exponential speed-up compared to a direct computation
of the rank of the Jacobian of the parametrisation Ψd,r. Since many varieties in the context
of tensors can be recast as neurovarieties (see Subsection 4.2.1), the approach described
below might also prove useful for other dimension computations in algebraic statistics.

Algorithm 1 computes the gradient of a loss function ℓ of a neural network evaluated
at a specific sample. If we choose the loss function ℓ to be the network Fθ itself, backprop-
agation returns the gradient ∇wFθ(x̂). However, when we are interested in computing the
Jacobian of Ψd,r, we need to compute the partial derivatives ∂wj,k,l c

(i)
I , whereas

∂F(i)
θ

∂wj,k,l
(x̂) = ∑

I

∂c(i)I
∂wj,k,l

x̂I . (4.2.6)

By choosing N := (rL−1+d0−1
d0−1 ) many samples x̂1, x̂2, . . . , x̂N and applying backpropagation

to each of them, we obtain a linear system from (4.2.6) in the unknowns ∂wj,k,l c
(i)
I . For

generic samples, this system has a unique solution, and we obtain the Jacobian JΨd,r .
This routine allows us to compute Jacobians and in particular the dimension of the

neurovariety exponentially faster than via the naı̈ve method of computing all derivatives
of the parametrisation Ψd,r. It can be easily adapted for computations over finite fields
which makes dimension computations even faster. In [KTB19] this routine has already
been implemented, however (as of Jan 22 2025), their implementation at [KTB] contains
a mistake in the set-up of the linear system described above. We provide a corrected
implementation at [KLW24b].

4.2.4. The symmetries of an exceptional shallow network
We explicitly describe a family of symmetries beyond multi-homogeneity (Lemma 4.2.4)
for the architecture d = (5, 7, 1), r = 3, one of the exceptional cases of the Alexander–
Hirschowitz Theorem. The expected dimension of Vd,r is 35, however, its actual dimension
is 34. Therefore, there exists a one-dimensional family of symmetries in the parameter
space not of the form as in Lemma 4.2.4.

In the following we will use an equivalent formulation of the Alexander–Hirschowitz
Theorem as can be found in [BO08, Theorem 1.1].
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Theorem 4.2.34 (Alexander–Hirschowitz, geometric version). Let X be a general collection
of k double points in Pn and let IX(d) ⊆ Symd(C

n) be the subspace of polynomials through X,
i.e. with all first partial derivatives vanishing at the points of X. Then the subspace IX(d) has
the expected codimension min{(n + 1)k, (n+d

n )} except in the cases as in Theorem 4.2.23 (with the
notation d = r, n = d0 − 1, k = d1).

Geometrically the situation depicts as follows: consider seven points p1, . . . , p7 in P4.
We are interested in cubics singular at these seven points, i.e. we are looking for f ∈
Sym3(C

5) such that f (pi) = d fpi = 0 for i = 1, . . . , 7. One would expect that no such
cubic exists: the space of cubics in five variables has dimension 35 and the seven points
are expected to impose 35 independent conditions. But through seven points there exists
a rational normal curve C which after a suitable coordinate transformation is given as

C =

(x0 : · · · : x4) ∈ P4 : rk

x0 x1 x2
x1 x2 x3
x2 x3 x4

 ≤ 1

 .

A different way to write the curve C is as follows. Assume the five points p1, . . . , p5
are (1 : 0 : 0 : 0 : 0), . . . , (0 : 0 : 0 : 0 : 1); if p1, . . . , p7 are in general position then
p6 and p7 have nonzero coordinates. Consider the birational Cremona transformation
τ : (x0 : · · · : x4) 7→ (x−1

0 : · · · : x−1
4 ). Then C is the preimage under τ of the line τ(p6)τ(p7).

It is well-known that the secant variety of such a determinantal variety is given by

σ(C) =

(x0 : · · · : x4) ∈ P4 : det

x0 x1 x2
x1 x2 x3
x2 x3 x4

 = 0

 .

This is a cubic hypersurface with singular locus C; in particular, σ(C) is singular at
p1, . . . , p7. See [BO08, §3] for more details.

Now it is possible to vary p7 along C such that the construction of σ(C) remains un-
changed. Consider the PNN

W2 ◦ ρ3 ◦W1x

where x ∈ R5, W1 ∈ R7×5, W2 ∈ R1×7. Assume similar to above that the curve τ(C) is
given by the 2× 2 minors of (

w−1
161 . . . w−1

165
w−1

171 . . . w−1
175

)
. (4.2.7)

We are looking for a symmetric matrix G ∈ GL(7, R) such that GW1 gives rise to the same
curve τ(C). Again, w.l.o.g., we assume that the first five rows and columns of G are the
identity matrix. Thus, restricting to the last two rows and columns of G, we require that(

g1 g2
g2 g3

)(
w−1

161 . . . w−1
165

w−1
171 . . . w−1

175

)
have the same 2× 2 minors as (4.2.7). Normalising G to have determinant one we can
solve this to obtain

G =

Id5 0 0
0 g ϕ

0 ϕ
1+ϕ2

g


where ϕ = ( 1

2 (−1 +
√

3))1/2 and g ∈ R is a free parameter. Thus, we have obtained a
one-dimensional family of symmetries on the parameter space leaving the image of the
parameter map Ψd,r unchanged.
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4.3. Optimisation landscape
When training a neural network one needs to solve an empirical minimisation problem,
as was explained in Section 2.5, and in particular (2.5.2). It turns out that, analogously
to maximum likelihood estimation (see Section 2.2) or Euclidean distance minimisation,
there exists a degree of this optimisation problem constituting a measure for the algebraic
complexity of solving this problem. In Subsection 4.3.1, we study the (static) optimisation
properties of a PNN by introducing the learning degree of the corresponding neurovariety
and relate it to the generic Euclidean distance degree. This provides an upper bound on the
number of nonsingular functions that can be learned by a network after a training process.
We compute this number for a specific family in Theorem 4.3.5 and relate this theoretical
result and its practical implications to a machine learning experiment in Subsection 4.3.2.
In the expository Subsection 4.3.3, we review the trajectory-based convergence results of
gradient descent on linear neural networks and phrase open questions for polynomial
neural networks with activation degree r ≥ 2.

4.3.1. The learning degree of a PNN
Often one tries to solve the empirical risk optimisation problem (2.5.1) using gradient
based methods, see Section 2.5. Therefore, one is interested in computing the critical
points on the neurovariety of the loss function ℓpw as defined in (2.5.2) for a PNN pw. In
particular, the number of such points provides an estimate on the number of functions the
optimisation process can converge to, see the experiment in Subsection 4.3.2.

Definition 4.3.1. If there is a finite number of critical points of ℓpw on the regular locus of
Vd,r which is constant for a general choice of training data (xi, yi)i, we call this number the
learning degree of the network pw with respect to loss ℓ, and denote it by Ldegℓ(pw).

In the following we study the case of the Euclidean loss function. We show that in this
case the learning degree is independent of the choice of training data (xi, yi)i. An upper
bound for the learning degree is provided by the generic Euclidean distance (ED) degree.

Definition 4.3.2 ([BKS24, Definition 2.8]). Let X be a variety, let Λ = (λ1, . . . , λn) ∈ Rn
+

and let u ∈ Rn be a general point. The Λ-weighted Euclidean distance degree of X is the
number of (complex) critical points on X of the function

∥x− u∥2
Λ :=

n

∑
i=1

λi(xi − ui)
2.

For general weights Λ, this number is independent of Λ, and we call it the generic
Euclidean distance (ED) degree of X, which we denote as EDdeggen(X).

Let (p(i)w (x))i ∈ (Symd(R
n))m be a tuple of polynomials in n variables x = (x1, . . . , xn)

occurring as the output of a fixed PNN with weights w. Suppose we want the PNN to
learn the tuple of polynomials ( fi(x))i ∈ (Symd(R

n))m. To this end, we sample N input
vectors x̂1, . . . , x̂N ∈ Rn according to some distribution. Evaluating ( fi(x))i at these points
yields ŷj := ( fi(x̂j))i ∈ Rm for j = 1, . . . , N; the pairs (x̂j, ŷj)j constitute the training data.

The learning process is defined by minimising the average Euclidean distance between
ŷj and the points (p(i)w (x̂j))i obtained from evaluating the network at the samples x̂j. This
corresponds to empirical risk minimisation with ℓ2 loss. Concretely, we need to

minimise
1
N

N

∑
j=1
||(p(i)w (x̂j))i − ŷj||2 over weights w. (4.3.1)
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Note that (p(i)w (x̂j))i, ŷj ∈ Rm for all j = 1, . . . , N, and we have

1
N

N

∑
j=1
||(p(i)w (x̂j))i − ŷj||2 =

1
N

m

∑
i=1

N

∑
j=1
||p(i)w (x̂j)− (ŷj)i||2.

Our goal is to show that for each i = 1, 2, . . . , m, this is a quadratic form in the coeffi-
cients of p(i)w and fi over training data. Let us write

p(i)w (x) = ∑
I∈([n]d )

ρi
Ix

I and fi(x) = ∑
J∈([n]d )

ϕi
Jx

J .

We define a matrix E as follows: E is a block-diagonal matrix with blocks Ei for i =

1, 2, . . . , m, and each block Ei has as row and column labels the multiindices α, β ∈ ([n]d ).
Then the entry Ei

α,β is defined as

Ei
α,β :=

1
N

N

∑
j=1

x̂α+β
j .

This allows us to re-express the empirical risk as

1
N

N

∑
j=1
||p(i)w (x̂j)− fi(x̂j)||2 = ∑

α,β
(ρi

α − ϕi
α)Ei

α,β(ρ
i
β − ϕi

β).

Therefore, the loss function (4.3.1) is an Ei
α,β-weighted Euclidean distance in the space

(Symd(R
n))m, the ambient space of the neurovariety Vd,r. For a general choice of training

data (x̂i, ŷi)i, each block Ei of the linear transformation is generic. Note, however, that all
blocks Ei, for i = 1, . . . , m, will be equal, hence, the transformation E might be non-generic.
We summarise the discussion in the theorem below.

Theorem 4.3.3. The learning degree Ldegℓ2
(pw) of a PNN pw with architecture (d, r) with

respect to the Euclidean loss function exists. It is at most the generic Euclidean distance degree of
its neurovariety, i.e.

Ldegℓ2
(pw) ≤ EDdeggen(Vd,r). (4.3.2)

If pw has only a single output neuron, one has equality in (4.3.2).

For large samples, the quadratic form defined by E is independent of the samples.

Remark 4.3.4. Suppose x1, . . . , xN are drawn independently from a fixed distribution D
with known moments µk, k = 1, 2, . . . By the law of large numbers, for any ϵ > 0,

P(|Ei
α,β − µα+β| > ϵ)→ 0 as N → ∞.

Then for any ϵ > 0,

P

(∣∣∣∣∣ 1
N

N

∑
j=1
||p(i)w (x̂j)− fi(x̂j)||2 − (ρi −ϕi)T A(ρi −ϕi)

∣∣∣∣∣ > ϵ

)
→ 0 as N → ∞,

where A is a fixed N × N matrix whose entries are determined by the distribution D.

For the architecture d = (2, 2, k), r = 2, we compute the bound in (4.3.2) explicitly.
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Theorem 4.3.5. For k ≥ 2, the generic ED degree of V(2,2,k),2 is 8k2− 12k+ 3. Hence, the learning
degree of the PNN with architecture (d = (2, 2, k), r = 2) is at most 8k2 − 12k + 3.

The generic ED degree of a variety can be computed as the sum of its polar degrees
[BKS24, Cor. 2.14]. For a smooth variety X, this can be reformulated in terms of degrees
of Chern classes of X, see [BKS24, Thm. 4.20]. However, V := V(2,2,k),2 is not smooth: recall
that V consists of k× 3 matrices with rank ≤ 2; this determinantal variety has a non-empty
singular locus consisting of all matrices with rank ≤ 1. Therefore, we have to make use
of the machinery of Chern–Mather classes. The reader wishing to learn more about Chern
classes in the context of optimisation is referred to [BKS24, §4.3]. We give a brief definition
of Chern–Mather classes below, more details can be found for example in [Yok86].

Let X ↪→ PN be a projective variety of pure dimension d. Let Xreg denote the open
subvariety of X of nonsingular points and consider the embedding

g : Xreg ↪→ Gr(d, TPN), x 7→ TxXreg.

Then X̂ := g(Xreg) is called the Nash blow-up of X. The restriction of the projection
Gr(d, TPN) → PN to X̂ gives the Nash blow-up map ν : X̂ → X. Restricting the tautological
subbundle of Gr(d, TPN) to X̂ gives the Nash tangent bundle T̂X of X̂.

Definition 4.3.6. The ith Chern–Mather class cM
i (X) of X is the pushforward

cM
i (X) := ν∗

(
ci(T̂X ∩ [X̂])

)
.

The total Chern–Mather class cM(X) is the sum of all cM
i (X).

The following result by Zhang expresses the generic ED degree of a determinantal
variety in terms of degrees of Chern–Mather classes.

Lemma 4.3.7 ([Zha18, Prop. 5.5]). Let Vm,n,r ↪→ Pmn−1 be the determinantal variety of m× n
matrices with rank ≤ r. Then

EDdeggen(Vm,n,r) =
(m+k)(n−k)−1

∑
l=0

l

∑
i=0

(−1)i
(
(m + k)(n− k)− i
(m + k)(n− k)− l

)
β(m+k)(n−k)−1−i,

where k = m − r and cM(Vm,n,r) = ∑mn−1
l=0 βl Hl ∈ Z[H]/⟨Hmn⟩ = A(Pmn−1) with H =

c1(OPmn−1(1)) being the generator of the Chow ring of projective space A(Pmn−1).

The Chern–Mather class of a determinantal variety has a quite involved, yet very ex-
plicit description due to Zhang.

Theorem 4.3.8 ([Zha18, Thm. 4.3]). With the notation as in Lemma 4.3.7,

cM(Vm,n,r) = Tr(A(m, n, r) · H(m, n, r) · B(m, n, r)).

Here, A, B and H are the following (m(n− k) + 1)× (m(n− k) + 1) matrices (k = m− r):

A(m, n, r)i,j =
∫

Gr(k,n)
c(TGr(k,n))ci(Q∨m)cj−i(S∨m) ∩ [Gr(k, n)],

B(m, n, r)i,j =

(
m(n− k)− j

i− j

)
,

H(m, n, r)i,j = Hmk+j−i,

where S and Q are the universal sub- and quotient bundle of the Grassmannian, respectively, and
i, j = 0, 1, . . . , m(n− k).
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Proof of Theorem 4.3.5. We first need to compute the Chern–Mather class cM(Vk,3,2). Note
that in this case k = 1, so Gr(k, n) = Gr(1, 3) ∼= P2. Let A(P2) = Z[h]/⟨h3⟩ be the Chow
ring of P2 where h = c1(OP2(1)). The universal subbundle S is OP2(−1), so we have

c(TP2) = 1 + 3h + 3h2, c(S∨k) = 1 + kh +
1
2

k(k− 1)h2, c(Q∨k) = 1− kh +
1
2

k(k + 1)h2.

Using these, we compute, for example,

A(k, 3, 2)1,2 =
∫

P2
(1 + 3h + 3h2)(−kh)kh ∩ [P2] = −k2.

Similarly, we obtain that A(k, 3, 2) is the (2k + 1)× (2k + 1) matrix

A(k, 3, 2) =



3 3k 1
2 k(k− 1) 0 . . . 0

0 −3k −k2 0 . . . 0
0 0 1

2 k(k + 1) 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0


.

The matrix B(k, 3, 2) is given by

B(k, 3, 2) =


(2k

0 ) 0 0 . . . 0
(2k

1 ) (2k−1
0 ) 0 . . . 0

(2k
2 ) (2k

1 ) (2k
0 ) . . . 0

...
...

...
. . .

...
(2k

2k) (2k−1
2k−1) (2k−2

2k−2) . . . (0
0)


and the matrix H(k, 3, 2) is

H(k, 3, 2) =


Hk Hk+1 Hk+2 . . . 0
Hk−1 Hk Hk+1 . . . H3k−1

Hk−1 Hk−1 Hk . . . H3k−2

...
...

...
. . .

...
0 0 0 . . . Hk

 ,

where H = c1(OP3k−1(1)) is the generator of A(P3k−1). Carrying out the multiplication
B(k, 3, 2)A(k, 3, 2)H(k, 3, 2), one finds that the diagonal has entries

(2k
0 )
(
3Hk + 3kHk−1 + 1

2 k(k− 1)Hk−2)
(2k

1 )
(
3Hk+1 + 3kHk + 1

2 k(k− 1)Hk−1)+ (2k−1
0 )

(
−3kHk − k2Hk−1)

(2k
2 )
(
3Hk+2 + 3kHk+1 + 1

2 k(k− 1)Hk)+ (2k−1
1 )

(
−3kHk+1 − k2Hk)+ (2k

0 )
1
2 k(k + 1)Hk−1

...
(2k

2k) · 0 + (2k−1
2k−1)

(
−3kH3k−1 − k2H3k−2)+ (2k−2

2k−2)
1
2 k(k + 1)H3k−3

.

Computing the trace we find that

cM(Vk,3,2) =
2k−1

∑
j=−2

[
3
(

2k
j

)
+ 3k

((
2k

j + 1

)
−
(

2k− 1
j

))
+

1
2

k(k− 1)
(

2k
j + 2

)
+

1
2

k(k + 1)
(

2k− 2
j

)
− k2

(
2k− 1
j + 1

)]
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and hence, by Lemma 4.3.7,

EDdeggen(V(2,2,k),2) =
2(k+1)−1

∑
l=0

l

∑
i=0

(−1)i
(

2(k + 1)− i
2(k + 1)− l

) [
3
(

2k
i− 2

)
+ 3k

((
2k

i− 1

)
−
(

2k− 1
i− 2

))
+

1
2

k(k− 1)
(

2k
i

)
+

1
2

k(k + 1)
(

2k− 2
i− 2

)
− k2

(
2k− 1
i− 1

)]
.

Rearranging the double sum to

2(k+1)−1

∑
i=0

(
2(k+1)−1

∑
l=i

(
2(k + 1)− i
2(k + 1)− l

))
(−1)i

[
3
(

2k
i− 2

)
+ 3k

((
2k

i− 1

)
−
(

2k− 1
i− 2

))
+

1
2

k(k− 1)
(

2k
i

)
+

1
2

k(k + 1)
(

2k− 2
i− 2

)
− k2

(
2k− 1
i− 1

)]
and noting that

2(k+1)−1

∑
l=i

(
2(k + 1)− i
2(k + 1)− l

)
= 22(k+1)−i − 1,

one verifies that the above expression indeed equals 8k2 − 12k + 3.

Remark 4.3.9. For the architecture (d = (2, 2, 3), r = 2), Theorem 4.3.8 yields the bound
Ldegℓ2

(pw) ≤ 39. A numerical computation for a random choice of block Ei in the linear
transformation E reveals that the actual learning degree is Ldegℓ2

(pw) ≤ 3, which is also
the learning degree for the network with architecture (d = (2, 2, 1), r = 2). Moreover,
we observe that all critical points of the loss function are in fact real. This interesting
phenomenon should be further studied in future work.

4.3.2. Machine learning experiment
In this subsection we connect our theoretical study of the learning degree with a machine
learning experiment that is close to how neural networks are used in practice. This means
that we (approximately) solve the optimisation problem (2.5.1) in the training process via
stochastic gradient descent, as is explained in Section 2.5. The update rule for gradient
descent (2.5.3) reads as follows in the case of PNNs. For a PNN pw with weights w =
(W1, W2, . . . , WL), at time step t, each Wi is updated by

W(t+1)
i = W(t)

i − η∇Wiℓp
w(t) (4.3.3)

where ∇Wiℓp
w(t) is computed efficiently by backpropagation (see Algorithm 1).

We generate synthetic data consisting of m = 5000 datasets, each containing N = 50
data points. For each dataset, input pairs x̂ = (x̂1, x̂2)⊤ are sampled uniformly from the
range [−1, 1]. The corresponding outputs ŷ = (ŷ1, ŷ2, ŷ3)⊤ are generated using quadratic
functions with randomly sampled coefficients

ŷ1 = c1,1 x̂2
1 + c1,2 x̂1 x̂2 + c1,3 x̂2

2,

ŷ2 = c2,1 x̂2
1 + c2,2 x̂1 x̂2 + c2,3 x̂2

2, (4.3.4)

ŷ3 = c3,1 x̂2
1 + c3,2 x̂1 x̂2 + c3,3 x̂2

2,

where the coefficients ci,j were sampled from a normal distribution N (0, 1).
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We employ a polynomial neural network pw with architecture d = (2, 2, 3) and quadra-
tic activation function (r = 2), hence satisfying the assumptions in Theorem 4.3.5. The
parameters w consist of two matrices w = (W1, W2) with W1 ∈ R2×2 and W2 ∈ R3×2.

Each network is trained on its corresponding dataset using stochastic gradient descent
(SGD) with an initial learning rate of η = 0.1. The mean squared error loss function

L(W1, W2) =
1
N

N

∑
i=1
∥pw(x̂(i))− ŷ(i)∥2

2

is minimised. A learning rate scheduler reduces the learning rate by half every 1000
epochs. Training proceeds for a maximum of 15000 epochs or until the maximum gradient
magnitude falls below a threshold of 1× 10−4, indicating convergence. We refer to this
hyperparameter as the gradient norm threshold.

After training, we extract the quadratic coefficients learned by each network to rep-
resent the functions it had approximated. The extraction is performed by expressing the
network’s output as a quadratic function of the inputs. For each output unit j, the coeffi-
cients (a1j, a2j, a3j) are computed as

a1j = vj1w2
11 + vj2w2

21,

a2j = 2(vj1w11w12 + vj2w21w22), (4.3.5)

a3j = vj1w2
12 + vj2w2

22,

where vjk are entries of W2 and wkl are entries of W1.
To identify distinct functions learned by the network, we compare the extracted coeffi-

cients using a coefficient comparison method with a specified tolerance ϵ. Two functions
given by coefficients a(1)ij and a(2)ij as in (4.3.5) are considered the same if∣∣∣a(1)ij − a(2)ij

∣∣∣ < ϵ ∀i, j.

We systematically adjust the tolerance ϵ to explore its impact on the number of distinct
functions identified. By varying ϵ, we can control the granularity of function distinction,
allowing minor variations in coefficients to be considered functionally equivalent.

In addition, we perform perturbations on the function’s coefficients to assess whether
each learned function corresponds to a local minimum in the neuromanifold. Small per-
turbations δ are added to the coefficients

c̃ij = cij + δij, δij ∈ [−ε, ε],

where ε is a small value (e.g. 1 × 10−4). The perturbed coefficients also give rise to a
perturbed neural network which we denote by p̃w. The perturbed loss then becomes

Lδ(W1, W2) =
1
N

N

∑
i=1

∥∥∥ p̃w(x̂(i))− ỹ(i)
∥∥∥2

2
,

where ỹ(i) are defined as in (4.3.4) but using the perturbed coefficients c̃ij. If the value of
the original loss function is less than or equal to the losses of all perturbed functions, we
consider it to be a local minimum in the neuromanifold.

Through our experimental setup, we are able to

• train the network pw with 5000 datasets via gradient descent over 15000 epochs and
gradient norm threshold 10−4;

121



Figure 4.2: Coordinatewise comparison of the function most frequently learned by a PNN
with d = (2, 2, 3) and r = 2 (red graph) with the ground truth (green graph).

• identify 17 distinct functions whose coefficients differ at least by tolerance threshold
ϵ = 1/10 and that were learned with frequency no less than 10 out of 5000 datasets;

• check that for 16 out of 17 functions, the coefficient matrices have rank one;

• verify the local minimality of the one learned function whose coefficient matrix has
rank two in the neuromanifold by evaluating the loss landscape around the function.

The functions with rank-one coefficient matrices are singular points of the neuroman-
ifold. At those points the gradient descent algorithm “gets stuck” and does not converge
to a local minimum (as verified by the fourth bullet point above). Therefore, we should
only consider the single learned function that is a regular point of the neuromanifold. It
is also the most frequently learned function and is depicted in Figure 4.2. The fact that
the learning degree is three (see Remark 4.3.9) gives us a priori knowledge that most of the
17 learned functions in the training must be singular points and hence are not necessarily
local minima. This experiment illustrates how the learning degree informs the training
process. The experiment implementation is available at [KLW24b].

4.3.3. Case study: linear neural networks

In addition to static properties of neural network optimisation, we are also interested in
the trajectory of practical optimisation algorithms. This problem presents a more complex
challenge, particularly in its general form. Limited results are known for the special sub-
family of polynomial neural networks with activation degree r = 1. In this subsection, we
survey prior results on the trajectory of the gradient descent algorithms applied to linear
neural networks from literature in the algebraic statistics and machine learning communi-
ties separately. An interesting open question is to extend the analysis to polynomial neural
networks with general activation degrees.

Linear neural networks are a special class of polynomial neural networks with the
activation function ρ1(x) = x. The associated map from the set of parameters to vectors of
homogeneous polynomials of degree one in d0 many variables is given by

Ψd,1 : Rd0×d1 × · · · ×RdL−1×dL → (Sym1(R
d0))dL ∼= Rd0×dL , w 7→ pw =

(
p(1)w , . . . , p(dL)

w

)T
.
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The neuromanifold for the architecture d is

Md,1 = {M ∈ Rd0×dL : rk(M) ≤ min{d0, d1, . . . , dL}}.
In the linear case the neuromanifold is always equal to the neurovariety. By µd : Rd1×d0 ×
· · · ×RdL×dL−1 → Rd0×dL we denote the multiplication µd(W1, W2, . . . , WL) = WL · · ·W2W1.

Proposition 4.3.10 ([TKB20, Thm. 4]). Let d̃ = min(d), w = (W1, . . . , WL) and W = µd(w).

• (Filling case) If d̃ = min{d0, dL}, the differential dµd(w) has maximal rank equal to
dim(Md,1) = d0dL if and only if for any i ∈ [L − 1], either rk(Wj) = dL for all j > i
or rk(Wj) = d0 for all j < i + 1.

• (Non-filling case) If d̃ < min{d0, dL}, the differential dµd(w) has maximal rank equal to
dim(Md,1) = d̃(d0 + dL − d̃) if and only if rk(W) = d̃.

Besides static properties of the loss landscape, in the realm of neural networks, optimi-
sation often focuses on devising and refining algorithms to efficiently find the best model
parameters that minimise a loss function. Analysing the convergence trajectory is one of
the most challenging problems in machine learning theory. We recall results on the conver-
gence trajectory of deep linear neural networks with respect to ℓ2 loss in Theorem 4.3.11.

Theorem 4.3.11 ([ACGH19, Thm. 1], informal). Consider training deep linear neural networks
with ℓ2 loss using the gradient descent algorithm. Assume that at initialisation, the weight matrices
are well-conditioned. Moreover, assume the existence of δ > 0 such that at any time step T,

∥WT
j+1Wj+1 −WjWT

j ∥F ≤ δ, (4.3.6)

for all j = 1, 2, . . . , L− 1. Then for any ϵ > 0, with a sufficiently small learning rate, there exists
T0 such that the loss is no greater than ϵ for any T ≥ T0.

Theorem 4.3.11 shows that gradient descent converges to the global minimum at a
linear rate, given mild assumptions. Similar results have been shown for deep linear neu-
ral networks with losses beyond the ℓ2 loss. In [BPAM23], the authors consider deep
linear neural networks trained with the Bures–Wasserstein distance, a loss function com-
monly used in generative models. They analyse not only the critical points of the loss
landscape but also the convergence of both gradient flow and gradient descent for the
Bures–Wasserstein loss. The convergence trajectory of polynomial neural networks with
activation degree r ≥ 2 remains an open problem left for future work.

4.4. Conclusion
We have studied polynomial neural networks from an algebro-geometric perspective, aim-
ing at a better understanding of the learning capabilities and dynamics of these networks.
This framework provides an important step towards understanding networks with rational
activation functions which can efficiently model common activations like ReLU or sigmoid,
and testing our theoretical understandings of deep learning successes in practice.

We have characterised neuromanifolds and neurovarieties for some specific architec-
tures, and studied their dimensions. The geometry and dimension of the neuromanifold
relates directly to the expressive power of the neuromanifold. Beyond expressivity, we also
studied the optimisation process of polynomial neural networks, and bounded the number
of nonsingular critical points of a loss function using our new notion of learning degree.
Besides our conjectures from Subsection 4.2.3 concerning the dimension of neurovarieties,
there are further questions to be studied, for example: What are the learning degrees of
more general architectures? How many of the critical points of the loss functions are real?
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Chapter 5

Quantum physics

In this chapter we study connections between nonlinear algebra and quantum physics.
These connections work in two ways: in Section 5.1 we apply techniques from nonlinear
algebra to study the structure of quantum states satisfying certain conditions on their mu-
tual information. To this end, we associate several algebraic varieties to quantum graphical
models. These varieties are interesting in their own right and provide computational chal-
lenges; moreover, our new perspective provides insights into problems like finding the
quantum information projection to a quantum exponential family, the quantum analogue
of maximum likelihood estimation (see Subsection 5.1.7). When we restrict to quantum
states that are represented by diagonal matrices, these quantum states can simply be con-
sidered as discrete random variables. In this case, the algebraic varieties we associate to
the quantum graphical model boil down to the classical undirected graphical model from
statistics as discussed in Section 2.2. Therefore, we can regard Section 5.1 as a noncommu-
tative generalisation of the algebraic statistics of classical graphical models.

In Section 5.2 we take inspiration from quantum field theory. More precisely, we relate
the asymptotic expansion of an exponential integral to the generating function of certain
edge-coloured graphs. In the context of perturbative quantum field theory, this amounts
to an expansion of a path integral in a zero-dimensional quantum field theory in terms
of Feynman graphs. This integral representation then helps us find an expression for the
asymptotics of the number of edge-bicoloured graphs with a fixed vertex incidence struc-
ture (see Theorem 5.2.17). Here, the connection to nonlinear algebra becomes apparent
as the asymptotics is governed by certain critical points of a polynomial encoding the al-
lowed vertex incidence structure. Varying a coupling parameter between the two colours
can lead to phase transitions in the asymptotics resembling phenomena known from sta-
tistical physics. We connect our combinatorial graph enumeration problem to the partition
function of a critical Ising model in Remark 5.2.12.



5.1. Quantum graphical models
The goal of this section is to consider quantum graphical models [LP08] from the point of
view of algebraic geometry with the aim of offering a new perspective on open problems
in quantum information theory. Roughly speaking, when passing from the classical to
the quantum setting, we replace probability distributions with density matrices, with the
classical case being recovered when these matrices are diagonal. The graph describes a
physical quantum system with nodes representing subsystems. Such models have also
been coined quantum Markov networks in the quantum information theory literature [BP12,
DGMM20, PH11] and have applications to quantum many-body systems, quantum error
correction and the study of entanglement. This section describes different approaches to
obtain an algebraic variety associated to a quantum graphical model. See Section 2.6 for
the necessary background on quantum information theory.

In Section 2.2 we already explained how graphical models play a prominent role in
algebraic statistics. The key insight is that (undirected) graphical models give rise to nice
(toric) varieties. For example [PS05, Ex. 1.29], consider the chain graph G on three vertices

X Y Z

with binary random variables X, Y and Z. Then G encodes the conditional independence
statement X ⊥⊥ Z | Y giving rise to a statistical model described by the algebraic variety

MG = V(p001 p100 − p000 p101, p011 p110 − p010 p111) ⊆ P7 = Proj(C[p000, . . . , p111]).

This algebraic perspective advances both the theoretical foundations for these statistical
models and the development of new computational methods for the practical use. At the
core of these advances lies the understanding of the implicit and parametric descriptions
of the model and its likelihood geometry. This proved to be useful in model selection,
causal discovery and maximum likelihood estimation [Eva20, GMS06, LUSB14, URBY13].

Motivated by this, we find ways to associate algebraic varieties to quantum graphical
models and make progress towards understanding their implicit and parametric descrip-
tions. This leads to a number of interesting varieties and new computational challenges.
The role of the maximum likelihood estimator is taken by the quantum information projec-
tion. We study its geometry for quantum exponential families of commuting Hamiltonians,
e.g. Hamiltonians arising in the context of graph states.

A main motivation for us from quantum information theory is the problem of finding a
description of the set of compatible density matrices on subsystems of a composite system.
This is known as the Quantum Marginal Problem and is mostly open.

Problem 5.1.1 (Quantum Marginal Problem). Let S = {1, . . . , N} be a composite sys-
tem on N qudits and suppose we are given density matrices ρS1 , . . . , ρSn of n subsystems
S1, . . . , Sn ⊆ S. What conditions do ρS1 , . . . , ρSn have to satisfy to arise from ρS as

ρSi = TrS\Si
ρS ?

For general graphs, this problem has only been solved in the case of disjoint subsystems
Si. See [TV15] for a survey. However, for trees it is possible to reconstruct a quantum
state from its two-body marginals [DGM21, DGMM20]. This can be done using algebraic
methods and motivates the algebro-geometric notions of quantum graphical models we
introduce in this section. Associating algebraic varieties to quantum graphical models and
studying their defining equations might open a new way of attacking this problem.
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The section is organised as follows. In Subsection 5.1.1, we introduce the quantum
conditional mutual information (QCMI) variety and in Subsection 5.1.2 the Petz variety. The
former is obtained from studying the structure of quantum states satisfying strong subad-
ditivity with equality [HJPW04]. The latter is related to the Petz recovery map [Pet86] and
the solution of the Quantum Marginal Problem for the 3-chain [TV15]. In both instances,
the graph imposes quantum conditional independence statements, in direct analogy to
the classical case. In Section 5.1.3, we suggest a notion of a quantum graphical model as
the Gibbs manifold [PST23] of a certain family of Hamiltonians and consider the smallest
variety that contains it (known as the Gibbs variety). Here, the graph encodes a locality
structure imposed on the Hamiltonians [BP12]. This subsection also includes results on
Gibbs varieties. Finally, we present results on quantum exponential families coming from
stabiliser codes [NC02, §10]; one particular example are families of Hamiltonians associated
to graph states [HEB04]. We study the quantum information projection [NGKG13] and
relate it to maximum likelihood estimation, proving a generalisation of Birch’s Theorem.

Throughout the sections we provide algorithms to compute the varieties appearing in
our study and present computational examples. Those are implemented in Julia mak-
ing use of the computer algebra package Oscar.jl [OSC24] and the numerical algebraic
geometry tool HomotopyContinuation.jl [BT18]; the code is available at [DPW23b].

The ambient space of the algebraic varieties we consider is Sn ∼= Cn(n+1)/2, each point
being a complex symmetric matrix. To recover a specific quantum model, we intersect the
variety with the PSD cone and the hyperplane of trace one matrices.

5.1.1. Quantum conditional mutual information varieties
In this subsection we give the definition of quantum conditional mutual information
(QCMI) and collect some of its properties. The vanishing of QCMI should be thought
of as a quantum analogue to conditional independence and gives rise to an algebraic vari-
ety that we call the QCMI variety.

The von Neumann entropy S(ρ) of a quantum state ρ is S(ρ) = −Tr(ρ log ρ) and is a
straightforward generalisation of the classical Shannon entropy; here, the logarithm has
base two. Let ρABC be a tripartite state; then the quantum conditional mutual information
between A and C given B is defined as

I(A : C | B) := S(AB) + S(BC)− S(ABC)− S(B),

where S(ABC) = S(ρABC), S(AB) = S(TrC ρABC) etc. See [Wil13, §11.7] for more details. If
one replaces the von Neumann entropy with the Shannon entropy in the above definition,
one obtains the classical conditional mutual information Icl(A : C | B) between random
variables A and C given B. Its vanishing Icl(A : C | B) = 0 is well-known to be equivalent
to the conditional independence A ⊥⊥ C | B and leads to two possible different factorisa-
tions of the joint probability distribution p(a, b, c) [HJPW04]. The vanishing of QCMI of a
tripartite system behaves similarly, implying a more involved factorisation of the density
matrix of the tripartite system (see Construction 5.1.4).

The following constitutes a quantum analogue to the conditional independence axioms
for probability distributions, see [LP08, Thm. 4.5].

Proposition 5.1.2. Let S be a composite quantum system with disjoint subsystems A, B, C, D ⊆ S.
Then the following implications hold:

1. I(A : C | B) = 0⇒ I(C : A | B) = 0 (Symmetry),

2. I(A : CD | B) = 0⇒ I(A : C | B) = 0 (Decomposition),
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3. I(A : CD | B) = 0⇒ I(A : C | BD) = 0 (Weak Union),

4. I(A : B |CD) = 0 and I(A : D |C) = 0⇒ I(A : BD |C) = 0 (Contraction).

The QCMI is closely related to the strong subadditivity (SSA) inequality [LR73]

S(ABC) + S(B) ≤ S(AB) + S(BC).

The case of equality in SSA, i.e. I(A : C | B) = 0, has been intensively studied; the main
result is the following statement from [HJPW04].

Theorem 5.1.3. A quantum state ρABC onHA⊗HB⊗HC satisfies SSA with equality if and only
if there exists a decomposition of HB as

HB =
⊕

j

HbL
j
⊗HbR

j

such that ρABC decomposes as
ρABC =

⊕
j

qjρAbL
j
⊗ ρbR

j C,

where {qj}j is a discrete probability distribution and ρAbL
j
, ρbR

j C are states on HA ⊗ HbL
j

and
HbR

j
⊗HC, respectively.

Construction 5.1.4 (QCMI variety of the 3-chain graph). The following reformulation of
Theorem 5.1.3 plays a central role in the construction of the QCMI variety. Setting ΛAB :=⊕

j qjρAbL
j
⊗ IdbR

j C and ΛBC :=
⊕

j IdAbL
j
⊗ ρbR

j C, we arrive at

I(A : C | B) = 0 if and only if ρABC = ΛABΛBC with [ΛAB, ΛBC] = 0, (5.1.1)

where ΛAB, ΛBC are symmetric matrices acting on HA⊗HB⊗HC and ΛAB acts as identity
onHC, and, likewise, ΛBC acts as identity onHA [BP12]. Then the right-hand side of (5.1.1)
gives rise to a parametrisation of a variety we denote by QI(A:C | B).

Example 5.1.5 (QI(A:C | B) in the qubit case). Let HA
∼= HB ∼= HC

∼= C2 and write ΛAB =

M ⊗ Id2, ΛBC = Id2 ⊗ N for M, N ∈ S4. In this case, the parametrisation of QI(A:C | B)
induced by the right-hand side of (5.1.1) sends

M =


x1 x2 x3 x4
x2 x5 x6 x7
x3 x6 x8 x9
x4 x7 x9 x10

 and N =


y1 y2 y3 y4
y2 y5 y6 y7
y3 y6 y8 y9
y4 y7 y9 y10


to the matrix

x1y1 + x2y4 x1y2 + x2y5 x1y4 + x2y6 x1y7 + x2y9 x4y1 + x7y4 x4y2 + x7y5 x4y4 + x7y6 x4y7 + x7y9
x1y2 + x2y7 x1y3 + x2y8 x1y5 + x2y9 x1y8 + x2y10 x4y2 + x7y7 x4y3 + x7y8 x4y5 + x7y9 x4y8 + x7y10
x2y1 + x3y4 x2y2 + x3y5 x2y4 + x3y6 x2y7 + x3y9 x5y1 + x8y4 x5y2 + x8y5 x5y4 + x8y6 x5y7 + x8y9
x2y2 + x3y7 x2y3 + x3y8 x2y5 + x3y9 x2y8 + x3y10 x5y2 + x8y7 x5y3 + x8y8 x5y5 + x8y9 x5y8 + x8y10
x4y1 + x5y4 x4y2 + x5y5 x4y4 + x5y6 x4y7 + x5y9 x6y1 + x9y4 x6y2 + x9y5 x6y4 + x9y6 x6y7 + x9y9
x4y2 + x5y7 x4y3 + x5y8 x4y5 + x5y9 x4y8 + x5y10 x6y2 + x9y7 x6y3 + x9y8 x6y5 + x9y9 x6y8 + x9y10
x7y1 + x8y4 x7y2 + x8y5 x7y4 + x8y6 x7y7 + x8y9 x9y1 + x10y4 x9y2 + x10y5 x9y4 + x10y6 x9y7 + x10y9
x7y2 + x8y7 x7y3 + x8y8 x7y5 + x8y9 x7y8 + x8y10 x9y2 + x10y7 x9y3 + x10y8 x9y5 + x10y9 x9y8 + x10y10


.

This results in a twelve-dimensional variety inside S8 cut out by 735 equations in degrees
one to five; the degree of QI(A:C | B) is 110. As all of these equations are homogeneous,
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QI(A:C | B) can be considered as a subvariety of P35 = Proj(C[z1, . . . , z36]). Among these
equations only two are linear:

z14 − z18 + z23 − z29 = 0, z12 − z16 − z25 + z31 = 0,

and just one has degree five:

− z13z22z29z31z33 − z13z22z2
31z35 + z13z24z2

29z33 + z13z24z29z31z35 + z2
22z29z31z33

+ z2
22z2

31z35 + z22z24z25z29z35 − z22z24z25z31z33 − z22z24z2
29z33 − 2z22z24z29z31z35

+ z22z24z2
31z33 − z23z2

24z29z35 + z23z2
24z31z33 + z2

24z2
29z35 − z2

24z29z31z33 = 0.

Here, the variables z1, . . . , z36 denote the entries of a symmetric 8× 8 matrix written in
order starting from left to right and continuing from top to bottom. Note that if you set
all non-diagonal entries in M and N to zero, this results in a monomial parametrisation of
the classical graphical model of the 3-chain as presented in the introduction. ♢

Proposition 5.1.6. The variety QI(A:C | B) is irreducible.

Proof. Under the composition of morphisms

U(8)×R4 ×R4 → S8 × S8 mult.−−→ S8

(U, λ, µ) 7→
(

U diag(λ1, λ1, . . . , λ4, λ4)U−1, U diag(λ1, . . . , λ4, λ1, . . . , λ4)U−1
)

(M, N) 7→ M · N,

where λ = (λ1, . . . , λ4) and µ = (µ1, . . . , µ4), QI(A:C | B) is the image of an irreducible vari-
ety and hence irreducible itself.

In analogy to the classical theory of graphical models, we associate QCMI statements to
separations in an undirected graph. For classical graphical models on undirected graphs,
the Hammersley–Clifford Theorem (Theorem 2.2.7) states that a positive probability dis-
tribution satisfies the conditional independence statements associated to separations in a
graph if and only if it factorises according to the graph. One might attempt to achieve a
similar factorisation theorem for quantum graphical models, however, such description is
not available for arbitrary graphs. Nevertheless, there is a “quantum Hammersley–Clifford
Theorem” for trees which is given by the following statement.

Theorem 5.1.7 ([PH11, Thm. 1]). Let G = (V, E) with V = {v1, . . . , vN} be a tree and let ρ
be a positive definite quantum state on a Hilbert space H = H1 ⊗ · · · ⊗ HN satisfying all QCMI
statements imposed by G. Then ρ can be written as the exponential of a sum of local commuting
Hamiltonians, i.e. ρ = exp(H) with

H = ∑
C∈C(G)

hC, [hC, hC′ ] = 0 for all C, C′ ∈ C(G),

where C(G) is the set of cliques of G and hC is only nontrivial on the clique C, i.e. hC is an
endomorphism on H acting as identity on each Hi where vi /∈ C.

This quantum Hammersley–Clifford Theorem is a generalisation of equation (5.1.1) to
trees. Along with Example 5.1.5, this suggests the following construction of the QCMI
variety of a tree and an associated quantum graphical model.
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Construction 5.1.8 (QCMI variety of a tree). Let G = (V, E) be an undirected tree with
vertices labelled S1, . . . , SN . Let ρV = ρS1...SN be a quantum state on H1 ⊗ · · · ⊗ HN . For
each triple of vertices Si, Sj, Sk such that Sj separates Si from Sk in G, we impose the QCMI
statement I(Si : Sk | Sj) = 0, i.e. we require

TrV\{Si ,Sj,Sk} ρV = ΛSiSj ΛSjSk with
[
ΛSiSj , ΛSjSk

]
= 0 (5.1.2)

as in (5.1.1). Moreover, for any two QCMI statements I(Si : Sk | Sj) = 0 = I(Si′ : Sk′ | Sj′)
we impose the compatibility constraints

TrT \(T ∩T ′) ρT = TrT ′\(T ∩T ′) ρT ′ where T = (Si, Sj, Sk), T ′ = (Si′ , Sj′ , Sk′). (5.1.3)

In the qubit case, this construction gives rise to Algorithm 7 whose output is a variety
inside S2N

. We call this variety the QCMI variety associated to G and denote it by QG.
Algorithm 7 constructs the QCMI variety by considering the conditions (5.1.2), (5.1.3) as
polynomial constraints in the entries of an arbitrary density matrix ρ and of the matrices
ΛSiSj , ΛSjSk , then it eliminates the Λ parameters. The QCMI variety QG defines a quantum
graphical model MG by restricting to positive semidefinite matrices with trace one inside
QG. Note that Algorithm 7 and the notion of the QCMI variety generalise straightfor-
wardly to arbitrary qudit systems.

Algorithm 7 Computing the QCMI variety QG

Input: A tree G = (V, E)
Output: Polynomials defining QG ⊆ S2N

1: N ← #V
2: ρV ← symmetric (2N × 2N)-matrix consisting of variables ρ11, ρ12, . . . , ρ2N2N

3: E ← ∅ initialise list of equations
4: for every triple of vertices T = (Si, Sj, Sk) such that Sj separates Si from Sk in G do
5: ΛSiSj ← (λTlm)⊗ Id2 where (λTlm) is a symmetric 4× 4 matrix of variables
6: ΛSjSk ← Id2 ⊗ (µTlm) where (µTlm) is a symmetric 4× 4 matrix of variables
7: E ′ ← entries of TrV\T ρV −ΛSiSj ΛSjSk

8: E ′′ ← entries of
[
ΛSiSj , ΛSjSk

]
9: E ← E ∪ E ′ ∪ E ′′

10: end for
11: for every pair of triples of vertices T = (Si, Sj, Sk) and T ′ = (Si′ , Sj′ , Sk′) do
12: E ′′′ ← entries of TrT \(T ∩T ′) ρT − TrT ′\(T ∩T ′) ρT ′
13: E ← E ∪ E ′′′
14: end for
15: I ← ideal generated by E in C[ρ, λ, µ]
16: J ← elimination ideal I ∩C[ρ]
17: return a set of generators of J

Remark 5.1.9. Let G be the 3-chain graph with ordered vertex labels A, B and C and
consider the qubit case HA

∼= HB ∼= HC
∼= C2. Then QG is the variety QI(A:C | B) from

Example 5.1.5. The computations in this example were carried out using Algorithm 7.

Remark 5.1.10. Note that as we consider trees, it is equivalent to impose QCMI statements
on triples of vertices as in Construction 5.1.8 or to impose a global quantum Markov property,
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in the sense that one imposes the QCMI statement I(A : C | B) for any triple of sets of
vertices A, B, C ⊆ V such that B separates A from C, as one can derive the latter from the
former by using the Weak Union and Contraction axioms from Proposition 5.1.2.

Example 5.1.11. Consider the claw tree G on four vertices with labels A, B, C, D, the set of
edges {{A, D}, {B, D}, {C, D}}, and the corresponding Hilbert spaces HA

∼= HB ∼= HC
∼=

HD ∼= C2. The Hilbert space of the full system is H = HA ⊗HB ⊗HC ⊗HD ∼= C16. Every
path in G with three vertices imposes a QCMI statement and any such path contains the
node D. The modelMG consists of all states ρ that satisfy the three QCMI statements

I(A : B |D) = I(A : C |D) = I(B : C |D) = 0.

These lead to factorisations of the marginal subsystems as

TrA ρABCD = ρBCD = ΛBDΛCD with [ΛBD, ΛCD] = 0,
TrB ρABCD = ρACD = ΛADΛCD with [ΛAD, ΛCD] = 0,
TrC ρABCD = ρABD = ΛADΛBD with [ΛAD, ΛBD] = 0.

In addition, there are compatibility conditions on the marginals which lead to

TrB ρABD = TrC ρACD, TrA ρABD = TrC ρBCD, TrA ρACD = TrB ρBCD.

It is computationally very challenging to obtain defining equations of QG as Algorithm 7
would involve eliminating 60 variables in a polynomial ring in 196 variables, which is
infeasible with current computational resources. ♢

Question 5.1.12. Is the variety QG irreducible for any tree G?

It would be desirable to find a parametrisation of QG. Quantum information theory
provides a map that recovers a unique quantum state compatible with given two-body
marginals on a tree, called the Petz recovery map [HJPW04, Pet86]. However, our alge-
braic version of this map does not parametrise the QCMI variety QG as we are working
with complex symmetric matrices instead of Hermitian matrices. The Petz recovery map
therefore gives rise to a different variety, which we introduce in the next subsection.

5.1.2. Petz varieties
The Quantum Marginal Problem asks about how to reconstruct a quantum state of a com-
posite system from the states of its subsystems. In the case of the 3-chain graph with
ordered vertices A, B and C, one can ask for a quantum state ρABC with given two-body
marginals ρAB and ρBC and satisfying the quantum Markov condition I(A : C | B) = 0.
The answer to this particular problem is given by the Petz recovery map. This map is of
algebraic nature and gives rise to the Petz variety which we study in this subsection.

We start by introducing the Petz recovery map for the 3-chain graph with the associated
Hilbert spaceH = HA⊗HB⊗HC. Let C be the set of pairs of compatible invertible density
operators on HA ⊗ HB and HB ⊗ HC, respectively, i.e. an element in C is of the form
(ρAB, ρBC), where ρAB and ρBC are invertible density operators satisfying the compatibility
condition TrA ρAB = TrC ρBC. The Petz recovery map RG for the 3-chain graph G is

RG : C → D(HA ⊗HB ⊗HC) (5.1.4)

RG(ρAB, ρBC)=(ρ1/2
AB ⊗ IdC)(IdA⊗ ρ−1/2

B ⊗ IdC)(IdA⊗ ρBC)(IdA⊗ ρ−1/2
B ⊗ IdC)(ρ

1/2
AB ⊗ IdC),
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where IdA, IdB and IdC are the identity operators on HA,HB and HC, respectively. The
recovered state is compatible with the marginals and satisfies I(A : C | B) = 0. Moreover,
it is the unique maximiser of the von Neumann entropy among all states on H [DGMM20,
Thm. 1]. This, in particular, shows that the map R′G defined by

R′G(ρAB, ρBC)=(IdA⊗ ρ1/2
BC )(IdA⊗ ρ−1/2

B ⊗ IdC)(ρAB⊗ IdC)(IdA⊗ ρ−1/2
B ⊗ IdC)(IdA⊗ ρ1/2

BC )

recovers the same state [DGMM20, Rem. 2].
The Petz recovery map (5.1.4) gives rise to a rational map RG. From this point for-

ward we restrict to the qubit case HA
∼= HB ∼= HC

∼= C2; the general case is a straight-
forward generalisation. Let ρ1/2

AB = X = (xij) be a 4× 4 symmetric matrix of variables
x11, x12, . . . , x44. In the same way, let ρ1/2

BC = Y = (yij). Finally, let ρ1/2
B = Z = (zij) be

a 2 × 2 symmetric matrix of variables. To reflect the required marginal compatibilities
between ρAB, ρBC and ρB, we impose the conditions TrC(Y2) = TrA(X2) = Z2. These con-
ditions cut out a variety V in S4

R × S4
R × S2

R. In analogy to (5.1.4), the map RG : V 99K S8
R

sends a point (x, y, z) ∈ V to

(x⊗ IdC)(IdA ⊗ z−1 ⊗ IdC)(IdA ⊗ y)(IdA ⊗ z−1 ⊗ IdC)(x⊗ IdC). (5.1.5)

We call the Zariski closure of RG(V) inside S8, the space of complex symmetric 8× 8 matri-
ces, the Petz variety of G and denote it PG.

Remark 5.1.13. The expression (5.1.5) for RG gives a concrete polynomial parametrisation
of PG. The polynomials appearing in RG have degree five and have a minimum of 20
and maximum of 32 terms. The number of parameter variables is 23 while the variety V
has dimension 17. Algorithm 8 provides a symbolic routine to compute the ideal of the
Petz variety for arbitrary trees. When restricting to the case where x, y and z are diagonal,
(5.1.5) gives yet another parametrisation of the classical graphical model of the 3-chain
from the introduction.

Proposition 5.1.14. Let G be the 3-chain graph. The Petz variety PG is irreducible.

Proof. Consider the subset S ⊂ S8
R × S8

R consisting of pairs of invertible matrices whose
partial traces agree. The condition that their partial traces agree defines a linear subspace
of S8

R× S8
R. Linear spaces are irreducible and taking out the locus of positive codimension

where the matrices become singular preserves irreducibility. Therefore, S is irreducible.
Note that RG can be considered as a map on S and the Zariski closure of its image coin-
cides with PG since square roots and inverses of symmetric matrices are again symmetric.
Therefore, since RG is continuous, PG is irreducible.

The Petz map can be generalised to arbitrary trees by iteratively applying the procedure
for 3-chains of a tree G [DGM21, DGMM20]. This is done by taking two leaves v1 and v2
of a tree G, and replacing G \ {v1, v2} by a single vertex representing a joint state on this
subgraph. The joint state on G is then expressed in terms of states on G \ {v1} and G \ {v2}
via (5.1.4); by applying this procedure iteratively to G \ {v1} and G \ {v2}, we reduce to
the level of two-body marginals. This process leads to a map as in (5.1.4) involving only
one- and two-body marginals; again, we denote the resulting map by RG. Note that the
expression for RG depends on the choice of v1 and v2 in each iteration.

We now generalise the construction of the Petz variety to arbitrary trees.

Construction 5.1.15 (Petz variety). Let G be a tree with N vertices and let us fix an ex-
pression for RG as obtained in the previous paragraph. Let ϱ1 and ϱ2 be the sets of
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one- and two-body marginals occurring in RG. Moreover, let V be the variety inside
S = (S2

R)
#ϱ1 × (S4

R)
#ϱ2 consisting of tuples of symmetric matrices satisfying compatibil-

ity constraints according to G. In analogy to (5.1.4), RG gives rise to a rational map
RG : V 99K S2N

R . The Petz variety PG of G is defined as RG(V) ⊆ S2N
.

Algorithm 8 makes this construction explicit and computes the ideal of PG.

Algorithm 8 Computing the Petz variety PG

Input: A tree G with N vertices
Output: An ideal defining the Petz variety PG ⊆ S2N

1: RG ← expression for RG in terms of one- and two-body marginals
2: ϱ1, ϱ2 ← sets of one- and two-body marginals, respectively, involved in RG
3: for all ρv ∈ ϱ1 do
4: Zv ← (zv

ij) symmetric 2× 2 matrix of variables
5: end for
6: for all ρv1v2 ∈ ϱ2 do
7: Xv1v2 ← (xv1v2

ij ) symmetric 4× 4 matrix of variables
8: end for
9: S← (S2

R)
#ϱ1
{Zvi}

× (S4
R)

#ϱ2
{Xvivj}

10: E ← ∅
11: for all pairs (ρv1v2 , ρw1w2) ∈ ϱ2

2 such that v2 = w1 do
12: E ← E ∪ {entries of Trv1(X2

v1v2
)−Trw2(X2

w1w2
)} ∪ {entries of Trv1(X2

v1v2
)−Z2

v2
}

13: end for
14: V ← variety defined by E inside S
15: RG ← RG with every ρv1v2 replaced by Xv1v2 and every ρv replaced by Zv

16: return ker(RG : C[S2N
]→ C[V])

Proposition 5.1.16. The Petz variety PG does not depend on the particular choice of expression
for the recovery map RG.

Proof. By the same argument as for the 3-chain graph above, the map RG does not depend
on the chosen expression. Let C be the domain of RG; each element of C is a tuple
consisting of #E-many compatible invertible two-body marginals, where E is the set of
edges of G. Consider the set (S4

R)
#E of #E-tuples of real symmetric 4 × 4 matrices; it

is Zariski dense in the set of complex symmetric matrices. We have RG(C ∩ (S4
R)

#E) =

RG(V ∩U) where U ⊆ C2N×2N
is the Zariski dense open set of invertible matrices. The set

RG(V ∩U) is Zariski dense in the Petz variety PG. Let R′G be another expression for the
recovery map, then RG(C ∩ (S4

R)
#E) = R′G(V ∩U) and denote by P ′G the variety defined

by R′G. It follows that R′G(V ∩U) = RG(V ∩U) so PG and P ′G agree on a dense open set,
thus PG = RG(V) = R′G(V) = P ′G.

Proposition 5.1.17. For any tree G, the Petz variety PG is irreducible.

Proof. The proof is analogous to that of Proposition 5.1.14: PG can be represented as the
Zariski closure of the image of a linear space under a continuous map.

Remark 5.1.18. Computing the defining equations of the Petz variety is very challeng-
ing. Even in the case of the 3-chain graph, Algorithm 8 does not terminate as it involves
symbolic computations in a polynomial ring with 59 variables. Applying numerical im-
plicitisation techniques is also not straightforward for the same reason.
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Remark 5.1.19. If we considered Hermitian matrices, the set of states recovered by the
Petz map would coincide with the set of states satisfying SSA with equality [HJPW04].
However, since the ambient space of our varieties is that of complex symmetric matrices,
the QCMI variety QG and the Petz variety PG are not the same.

5.1.3. Quantum graphical models from Gibbs manifolds
In this subsection, we consider a new class of quantum graphical models, which arise as
Gibbs manifolds of families of Hamiltonians. These serve as examples of quantum exponen-
tial families [Zho08]. Gibbs manifolds and Gibbs varieties have been introduced in [PST23]
as tools to study convex optimisation and, in particular, quantum optimal transport from
an algebro-geometric perspective; we recall the definition.

Definition 5.1.20. Let L be a linear space of real symmetric matrices (LSSM) of size n× n.
The Gibbs manifold GM(L) of L is exp(L) where exp denotes the matrix exponential. The
Gibbs variety GV(L) of L is the Zariski closure of GM(L) ⊆ Sn.

In physics, the Gibbs manifold parametrises thermal states of a family of Hamiltonians.
Those states are crucial to quantum many-body systems theory and computation [Alh23].
The Gibbs manifold is not in general algebraic, while the Gibbs variety is. In special
cases, their dimensions coincide. This happens, for instance, when L consists of diagonal
matrices with rational entries. For such L the resulting Gibbs variety is toric [PST23, Thm.
2.7] and recovers the classical notion of exponential families [Efr22]. Moreover, the Gibbs
manifold in this case is the intersection of the Gibbs variety with the cone of positive
definite matrices. One advantage of considering the Gibbs variety instead of the Gibbs
manifold is that it becomes possible to treat related problems in quantum information by
using symbolic and numerical methods from algebraic geometry.

5.1.4. Gibbs varieties of linear systems of Hamiltonians
The quantum Hammersley–Clifford Theorem (Theorem 5.1.7) suggests considering expo-
nentials of local Hamiltonians, i.e. those Hamiltonians that act nontrivially only on a small
subsystem. However, we do not consider the class of local commuting Hamiltonians as they
neither form an LSSM nor a unirational variety (see Subsection 5.1.5).

To a simple, undirected graph G = (V, E) we associate an LSSM of Hamiltonians as
follows. For each clique C in G, let LC be the LSSM given by all Hamiltonians supported on
C, i.e. those that act nontrivially only on the tensor factors Hi such that vi ∈ C and act as
identity on all other subsystems. More precisely, LC = ⊗iLi

C where Li
C = Sdi for vi ∈ C and

Li
C = Iddi otherwise. The family of Hamiltonians associated to G is then LG = ∑C∈C(G) LC

where the sum runs over all cliques of G [WG23, Equ. 17]. The quantum graphical model
is GM(LG) intersected with the space of trace one matrices. The Gibbs variety GV(LG)
gives an algebraic description of this model.

Example 5.1.21. Consider the 3-chain graph G and assume we are in the qubit case, i.e.
HA
∼= HB ∼= HC

∼= C2. Then we have LG = S2⊗ S2⊗ Id2 + Id2⊗ S2⊗ S2. Using numerical
algebraic geometry techniques, we verify that no linear or quadratic equations vanish on
GV(LG). The higher degree equations are not amenable to our computational techniques.
The dimension of GM(LG) is 15 while the dimension of GV(LG) is at most 22. ♢

Gibbs varieties have a number of nice theoretical properties, e.g. under mild assump-
tions they are unirational [PST23, Thm. 3.6]. However, as seen in Example 5.1.21, their
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defining ideals are often difficult to compute. In view of this, one might hope to simplify
the defining equations of the Gibbs variety by restricting the family of Hamiltonians to a
subset inside LG. This approach is pursued in the next subsection.

5.1.5. Gibbs varieties of unirational varieties
A natural subset to consider inside LG is XG := ∑C∈C(G) XC, where XC is the set of decom-
posable tensors supported on C. Note that XG is not a linear space. However, it is still a
unirational variety. This motivates the following extension of the notion of Gibbs varieties.

Definition 5.1.22. Let X be a unirational variety of symmetric matrices of size n× n. The
Gibbs variety GV(X) of X is the Zariski closure of exp(X) ⊆ Sn.

A number of concepts related to Gibbs varieties of linear spaces generalise to the case
of unirational varieties of symmetric matrices. If X is unirational and has dimension d,
then it can be parametrised by rational functions in d variables y1, . . . , yd. Therefore, one
can think of X as a single matrix with entries in C(y1, . . . , yd). The eigenvalues of this
matrix are elements of C(y1, . . . , yd) and will be referred to as the eigenvalues of X. Let
A ∈ Sn, then the X-centraliser of A is the set ZX(A) = {B ∈ X : AB− BA = 0}. We collect
properties of Gibbs varieties of unirational varieties in the following statement.

Proposition 5.1.23. Let X be a unirational variety of n× n symmetric matrices of dimension d.
Let m be the dimension of the Q-linear space spanned by the eigenvalues of X and k be the dimension
of the X-centraliser of a generic element of X. Then dim(GV(X)) = m + d − k. In particular,
dim(GV(X)) ≤ n + d. If X has distinct eigenvalues, then GV(X) is irreducible and unirational.

Proof. This proposition generalises [Pav24, Thm. 2.6] and [PST23, Thm. 3.6]. Proofs of
these statements carry over to the case of unirational varieties, since they only use the fact
that an LSSM can be parametrised by rational functions in y1, . . . , yd and do not depend
on these functions being linear.

Note that symbolic [PST23, Alg. 1] and numerical [Pav24, Alg. 1] implicitisation algo-
rithms for Gibbs varieties generalise accordingly.

Example 5.1.24. Again, consider the 3-chain graph G in the qubit case. The associated
unirational variety is XG = {K ⊗ L ⊗ Id2 + Id2 ⊗ M ⊗ N : K, L, M, N ∈ S2} ⊆ S8. The
dimension of X is equal to ten inside the 36-dimensional space of symmetric 8× 8 matrices.
The Gibbs variety GV(X) is a 14-dimensional irreducible variety cut out by nine linear
forms and 66 quadratic equations in S8. These results were obtained by using techniques of
numerical algebraic geometry. More precisely, we create a sample of points on GM(X) and
then interpolate with polynomials of a fixed degree by setting up a Vandermonde matrix
and computing its kernel via QR-decomposition to obtain a sparse representation, see
[BKSW18]; this procedure yields polynomials of degree one and two. As these equations
cut out an irreducible variety of the correct dimension, we obtain a generating set of the
prime ideal of GV(X).

The equations we obtained exhibit a remarkably simple structure; e.g. all polynomials
have coefficients ±1 and consist of at most eight terms. It would be very interesting to
obtain a theoretical explanation of this phenomenon. ♢

In the following two subsections we explore a completely different family of Hamil-
tonians HG associated to a graph G. This results in quantum exponential families that
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Figure 5.1: Left: the graph G. Right: illustration of the Hamiltonian H1.

have a richer structure than the ones considered in Section 5.1.3. However, it should be
emphasised that, unlike the previous constructions, this is not a generalisation of classi-
cal graphical models. On the other hand, all the results in this section hold for general
undirected graphs, not only trees.

5.1.6. Quantum exponential families of commuting Hamiltonians
In quantum physics, to an undirected graph G one associates an LSSM HG which gives
rise to the definition of graph states, used in the study of entanglement, e.g. [HEB04]. More
precisely, the graph state associated to G is the stabiliser state of HG. Stabiliser states appear
in the framework of the stabiliser formalism used in quantum error correction, see Section
2.6; in fact, all results in this section generalise to stabilisers. However, instead of studying
the graph states associated to HG, here we focus on its Gibbs variety; this latter perspective
gives yet another example of quantum exponential families.

Let G = (V, E) be a graph with vertices V = {v1, . . . , vN}. To each vertex vi, we
associate a Hamiltonian Hi =

⊗N
j=1 Hi,j with

Hi,j =


σX if i = j,
σZ if (i, j) ∈ E,
Id2 else.

Here, σX and σZ are the Pauli matrices introduced in Section 2.6. Denote the linear span of
this set of Hamiltonians by HG := ⟨Hi : i = 1, . . . , N⟩. The Hamiltonians Hi are elements
of the Pauli group PN .

Example 5.1.25. Consider the graph G on four vertices depicted in Figure 5.1.25. The
Hamiltonian H1 is given by

H1 = σX ⊗ σZ ⊗ σZ ⊗ Id2.

The linear space HG is spanned by the four Hamiltonians

σX ⊗ σZ ⊗ σZ ⊗ Id2, σZ ⊗ σX ⊗ σZ ⊗ σZ, σZ ⊗ σZ ⊗ σX ⊗ Id2, Id2 ⊗ σZ ⊗ Id2 ⊗ σX. ♢

In the following we consider the Gibbs variety of HG. We start by showing that HG is a
commuting family, implying that GV(HG) is toric after a linear change of coordinates and
the Gibbs manifold GM(HG) is semialgebraic [PST23, Thm. 2.7].

Lemma 5.1.26. Any H, H′ ∈ HG commute.

Proof. Without loss of generality, assume H and H′ are generators Hm and Hn of HG. For
P ∈ PN , let SuppX(P) := {j ∈ [N] : σ(j) = σX} and SuppZ(P) := {j ∈ [N] : σ(j) = σZ}
denote the supports of σX and σZ, respectively. As a consequence of the commutation
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relation (2.6.1), two Pauli product matrices P, Q ∈ PN containing only Id2, σX or σZ as
tensor factors commute if and only if

#(SuppX(P) ∩ SuppZ(Q)) + #(SuppZ(P) ∩ SuppX(Q)) ≡ 0 mod 2. (5.1.6)

Let N (v) denote the set of neighbouring vertices of v in G. Assume vn ∈ N (vm); then the
left-hand side of (5.1.6) for P = Hm and Q = Hn becomes #{m} + #{n} = 2. Finally, if
vn /∈ N (vm) ∪ {vm} the left-hand side of (5.1.6) is just zero.

Let us recall from [PST23] how to obtain the toric variety and the coordinate change
from GV(HG). The symmetric matrices H1, . . . , HN ∈ HG are simultaneously diagonalis-
able, i.e. there exist an orthogonal matrix U and diagonal matrices D1, . . . , DN such that
U−1HiU = Di for i = 1, . . . , N. The exponential of an element in HG is then

exp(x1H1 + · · ·+ xN HN) = U exp(x1D1 + · · ·+ xN DN)U−1

and thus GV(HG) = U · GV(D) ·U−1, where D = ⟨D1, . . . , DN⟩. Let Di = diag(di), i =

1, . . . , N for di ∈ R2N
and let D = ⟨d1, . . . , dN⟩ ⊆ R2N

be the R-vector space spanned by the
diagonals. Consider the smallest vector subspace DQ ⊆ R2N

containing D that is spanned
by elements of Q2N

and choose an integral basis a1, . . . , aN ∈ Z2N
of DQ. If A denotes the

N × 2N matrix with rows a1, . . . , aN then GV(D) is the toric variety XA associated to A.
We now connect quantum exponential families to toric varieties.

Remark 5.1.27. Note that any Pauli product matrix P ∈ PN has eigenvalues ±1, both
with multiplicity 2N−1 each. Lemma 2.6.2 can then be rephrased as follows: the (±1)-
eigenspaces of Pi intersect the eigenspaces of all P1, . . . , Pi−1 in half their dimension. This
fact is essential to the next theorem establishing a strong connection between quantum
exponential families and classical algebraic statistics.

Theorem 5.1.28. For any graph G with N vertices, GV(HG) is an independence model on N
binary random variables after a linear change of coordinates.

Proof. As shown above, GV(HG) = U · XA · U−1 where the rows of A are the diagonal
entries of Di = U−1HiU for i = 1, . . . , N and XA is the (affine) toric variety associated to
A. By Remark 5.1.27, we can assume A to be of the form

A =


−1 −1 −1 −1 · · · −1 −1 −1 −1 1 1 1 1 · · · 1 1 1 1
−1 −1 −1 −1 · · · 1 1 1 1 −1 −1 −1 −1 . . . 1 1 1 1

...
...

...
...

. . .
...

...
...

...
...

...
...

...
. . .

...
...

...
...

−1 −1 1 1 · · · −1 −1 1 1 −1 −1 1 1 · · · −1 −1 1 1
−1 1 −1 1 · · · −1 1 −1 1 −1 1 −1 1 · · · −1 1 −1 1

 (5.1.7)

i.e. the columns of A are the vertices of the N-dimensional hypercube [−1, 1]N . Thus, XA
is an independence model on N binary random variables.

Remark 5.1.29. The variety XA above is not the independence model in its standard de-
scription (as e.g. in Example 2.2.3). For example, for N = 3 we have

A =

−1 −1 −1 −1 1 1 1 1
−1 −1 1 1 −1 −1 1 1
−1 1 −1 1 −1 1 −1 1

 ;
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the prime ideal of XA is

IA =⟨x1x8 − 1, x6x7 − x5x8, x4x7 − x3x8, x2x7 − 1, x4x6 − x2x8,
x3x6 − 1, x4x5 − 1, x3x5 − x1x7, x2x5 − x1x6, x2x3 − x1x4⟩ ⊆ C[x1, . . . , x8].

The matrix A′ of the independence model has as columns the vertices of the hypercube
[0, 1]N . Adding a row of ones to A and to A′ yields the same variety. Thus, XA is an affine
patch of the independence model, i.e. of the Segre variety σ(P1 ×P1 ×P1) ⊆ P7.

In view of the stabiliser formalism laid out in Section 2.6 it becomes apparent that
Theorem 5.1.28 can be generalised to arbitrary stabilisers.

Theorem 5.1.30. Let S = ⟨p1, . . . , pN⟩ ≤ PN be generated by N independent and commuting
Pauli product matrices such that −Id2N /∈ S. Then GV(S) is an independence model on N binary
random variables after a linear change of coordinates.

Proof. The proof of Theorem 5.1.28 immediately generalises to this situation since we only
used that the Hamiltonians from graph states HG are independent and commuting Pauli
product matrices not containing the negative identity.

A priori, it is not obvious how to obtain defining equations for GV(HG) computation-
ally in an efficient manner. However, Theorem 5.1.28 gives rise to Algorithm 9 making
computations of defining ideals for graphs with four or more vertices feasible.

Algorithm 9 Computing defining equations of GV(HG)

Input: A graph G
Output: Polynomials defining GV(HG)

1: Compute HG = ⟨H1, . . . , HN⟩
2: U ← matrix simultaneously diagonalising H1, . . . , HN
3: I ← ideal of the independence model defined by A as in (5.1.7) in variables pi,i for

i = 1, . . . , 2N

4: Y = (yij)← linear coordinate change according to UPU−1 where P = (pij)
5: for all generators gk of I do
6: hk ← gk changed to Y-coordinates
7: end for
8: J ← ideal generated by all hk and yij = 0 for all i ̸= j ∈ {1, . . . , 2N}
9: return a set of generators of J

Note that Step 3 in Algorithm 9 can be pre-computed. This allows to reduce finding
the equations of GV(HG) to a linear algebra problem, therefore reducing the computational
complexity. An implementation of this algorithm is available at [DPW23b].

Example 5.1.31. Let G be the graph from Example 5.1.25. Using Algorithm 9, we compute
that GV(HG) ⊆ S16 is defined by 296 quadratic equations in 136 variables. The average
number of terms of each generator is about 1982. This highlights the fact that the equations
defining the Gibbs variety can be quite involved. It would be impossible to compute these
equations without using the additional structure of HG: both [PST23, Alg. 1] and [Pav24,
Alg. 1] failed to compute this example. ♢
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5.1.7. Quantum information projections
Given an arbitrary quantum state ρ we can ask for the member ρ̃ ∈ Q of some quantum
exponential family Q = GM(L) “closest” to ρ. Here, “closest” means minimising the
quantum relative entropy.

Definition 5.1.32. The quantum relative entropy D(ρ||σ) between a state ρ and a positive
semidefinite operator σ is

D(ρ||σ) :=
{

Tr(ρ(log(ρ)− log(σ))) if Supp(ρ) ⊆ Supp(σ)
+∞ otherwise.

Here, the support of a linear operator is the subspace orthogonal to the kernel with respect
to the standard inner product on Cn, and all logarithms are taken to have base two.

This is a quantum generalisation of the Kullback–Leibler divergence in classical in-
formation theory. Note that, similarly to the Kullback–Leibler divergence, the quantum
relative entropy is not an actual metric as it is not symmetric and does not satisfy the
triangle inequality. However, it does satisfy nonnegativity (quantum Gibbs’ inequality).
More precisely, if Tr(σ) ≤ 1 we have D(ρ||σ) ≥ 0 with equality if and only if ρ = σ.
See [Wil13, §11.8] for an extensive reference. Since minimising the Kullback–Leibler diver-
gence is equivalent to maximum likelihood estimation, minimising the quantum relative
entropy is the quantum analogue of maximum likelihood estimation. See Chapter 3 for
the geometric study of MLE.

Definition 5.1.33. The quantum information projection ρ̃ of a quantum state ρ to a quantum
exponential family Q is the element of Q which is the closest to ρ with respect to the
quantum relative entropy

ρ̃ = argmin
ρ′∈Q

D(ρ||ρ′).

The quantum information projection is unique and has been characterised in the case
whereQ consists of exponentials of local Hamiltonians [NGKG13, Lem. 2]. Since the Gibbs
manifold considered in the previous subsection is semialgebraic, we can use algebraic
techniques to find the quantum information projection in this case. The following theorem
gives an algebraic characterisation of the quantum information projection for a quantum
exponential family Q of commuting Hamiltonians, in particular for Q = GM(HG).

Theorem 5.1.34. Let H = ⟨H1, . . . , Hk⟩ be a linear span of commuting Hamiltonians in Sd
R, fix

a positive definite matrix ρ ∈ Sd
R and let bi := ⟨Hi, ρ⟩ = Tr(Hiρ) for i = 1, . . . , k. Let Mρ be the

affine linear space defined by

Mρ := {A ∈ Sd
R : ⟨Hi, A⟩ = bi for i = 1, . . . , k}.

Then Mρ ∩GM(H) consists of a unique point ρ∗. It is the maximiser of the von Neumann entropy
inside Mρ and the quantum information projection of ρ to GM(H).

Remark 5.1.35. This result generalises Birch’s Theorem (Theorem 2.2.11) to quantum ex-
ponential families that become toric after an orthogonal change of coordinates. It is an
interesting problem in algebraic statistics to determine which statistical models become
toric after some linear change of coordinates, see e.g. [MP23, KV24].
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Proof. The fact that Mρ ∩GM(H) = {ρ∗} and ρ∗ is the unique point maximising the von
Neumann entropy is a direct consequence of [PST23, Thm. 5.1]. It remains to show that
this point is the quantum information projection of ρ to GM(H).

Let ρ̃ be the quantum information projection of ρ to GM(H). As in the discussion
preceding Remark 5.1.27, let U be the matrix diagonalising H into D = ⟨D1, . . . , Dk⟩, i.e.
Hi = UDiU−1 for i = 1, . . . , k, so ρ̃ ∈ U GM(D)U−1. Minimising the quantum relative en-
tropy between ρ and GM(H) is then equivalent to minimising the quantum relative entropy
between U−1ρU and GM(D). Let σ := U−1ρU; then we want to maximise Tr(σ log(∆))
over diagonal matrices ∆ ∈ GM(D), i.e. find ρ̃′ = diag(δ̂) such that

ρ̃′ = argmax
∆∈GM(D)

∑
j

σjj log ∆jj.

This is the same problem as finding the maximum likelihood estimator on the exponen-
tial family GM(D) given data u = (σ11, σ22, . . . , σdd). Note that every coordinate of u is
nonzero. By Birch’s Theorem, δ̂ is the unique point on GM(D) satisfying Aδ̂ = Au where
A is the matrix whose ith row is the diagonal of Di as in (5.1.7). Observe that

(Au)i = ∑
j
(Di)jjσjj = Tr(Diσ) = Tr(DiU−1ρU) = Tr(UDiU−1ρ) = Tr(Hiρ) = bi;

analogously, (Aδ̂)i = Tr(Hiρ̃). This shows ρ̃ ∈ Mρ ∩GM(H) and thus ρ̃ = ρ∗.

Theorem 5.1.34 provides a way to compute the quantum information projection to
GM(HG) algorithmically by using numerical algebraic geometry; concretely, one can first
compute Mρ ∩GV(HG) and then choose the unique point lying in the PSD cone.

Example 5.1.36. Consider the positive definite matrix

ρ =



84 −22 11 −51 −15 −8 −26 4
−22 51 −5 −7 23 −13 17 40

11 −5 51 25 −16 −3 9 28
−51 −7 25 70 −19 17 18 −26
−15 23 −16 −19 92 32 23 24
−8 −13 −3 17 32 62 2 −36
−26 17 9 18 23 2 94 10

4 40 28 −26 24 −36 10 109


and the 3-chain graph G. The intersection Mρ ∩GV(HG) consists of six real matrices. Only
one of them is positive semidefinite, namely the matrix

ρ̃ =



20.5417 −12.5 −20.5 −12.4746 −5.5 3.34685 −5.48884 −3.34006
−12.5 20.5417 12.4746 20.5 3.34685 −5.5 3.34006 5.48884
−20.5 12.4746 20.5417 12.5 5.48884 −3.34006 5.5 3.34685

−12.4746 20.5 12.5 20.5417 3.34006 −5.48884 3.34685 5.5
−5.5 3.34685 5.48884 3.34006 20.5417 −12.5 20.5 12.4746

3.34685 −5.5 −3.34006 −5.48884 −12.5 20.5417 −12.4746 −20.5
−5.48884 3.34006 5.5 3.34685 20.5 −12.4746 20.5417 12.5
−3.34006 5.48884 3.34685 5.5 12.4746 −20.5 12.5 20.5417


.

This matrix is the quantum information projection of ρ to GM(HG). ♢
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5.2. Exponential integrals and edge-bicoloured graphs
In this section, we study the following family of bivariate integrals,

I(z) =
z

2π

∫
D

exp (z g(x, y)) dx dy , (5.2.1)

where D is a certain subset of R2, g is a function D → R satisfying specific conditions (see
Subsection 5.2.1) and z is a large positive number. Integrals as I(z) arise naturally in two
important applications. First, they appear in Bayesian statistics as marginal likelihood inte-
grals (see e.g. [Wat09, §1]). Second, they are path integrals associated to a zero-dimensional
quantum system with two interacting fields parametrised by x and y, whose action is given
by g(x, y) (see e.g. [Ski18, §2] or [BIZ80]). The setups might differ, however, in the integra-
tion domain D, leading to different asymptotic behaviours (see [Lin11] for an asymptotic
analysis in the realm of statistics). Edge-bicoloured graphs play a classical role in Ramsey
theory (see e.g. [Bol01, Ch. 12]) and their (asymptotic) enumeration is a subject with a long
history (see e.g. [Wor18] and the references therein).

We will explain that the coefficients of the large-z asymptotic expansion of I(z) count
weighted edge-bicoloured graphs. Each graph is weighted by the reciprocal of the order
of its automorphism group and the product of an arbitrary set of parameters assigned to
each bicoloured incidence structure of a vertex. We do so by proving a bivariate version of
the Laplace method in Subsection 5.2.1, before interpreting the coefficients of the asymp-
totic expansion combinatorially in Subsection 5.2.2. Therefore, we may interpret I(z) as a
generating function of edge-bicoloured graphs (Theorem 5.2.10). From a physical perspec-
tive, these are Feynman graphs of the corresponding path integral. In Subsection 5.2.3, we
derive an effective algorithm for the computation of those coefficients. In the final Sub-
section 5.2.4, we prove an asymptotic formula for the weighted number of regular edge-
bicoloured graphs, in the limit where the number of edges and vertices goes to infinity.
Our main result Theorem 5.2.17 relates this asymptotic formula to the critical points of
the polynomial g(x, y) whose shape is governed by the vertex incidence structure of the
graphs. We showcase that, unlike the monochromatic case (see e.g. [Bor18, Ch. 3]), only
critical points satisfying some reality constraints contribute to the asymptotics.

Throughout the section we illustrate our statements through the example of the Ising
model on a random 4-regular graph. The Ising model is a central object of study in
mathematical physics (see e.g. [Kaz86, DC23]). The relationship between our combinatorial
approach and this model is explained in Remark 5.2.12.

5.2.1. Laplace method and asymptotic expansions
We start by using the Laplace method to study the large-z behaviour of the integral I(z)
defined in (5.2.1). We require the data D and g : D → R to be chosen such that

1. the integral I(z) exists for z > 0,

2. D is a neighbourhood of the origin,

3. g attains its unique supremum sup(x,y)∈D g(x, y)= g(0) at the origin,

4. near the origin, g is analytic with absolutely converging expansion

g(x, y) = − x2

2
− y2

2
+ ∑

u,w≥0
u+w≥3

Λu,w
xuyw

u!w!
. (5.2.2)
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The last condition ensures that (5.2.1) resembles a Gaussian integral when x and y are
small. This observation allows approximating I(z) by a slightly perturbed Gaussian inte-
gral when z is large.

We define a family of polynomials as,t indexed by integers s, t ≥ 0 in a two-fold infinite
set of variables λu,w indexed by u, w ≥ 0 with u + w ≥ 1. Let R be the ring of polynomials
in these variables, i.e. R = Q[λ0,1, λ1,0, λ1,1, λ0,2, . . .]. The polynomials as,t(λ) ∈ R are
defined by the generating function

∑
s,t≥0

as,t(λ) xsyt = exp

 ∑
u,w≥0

u+w≥1

λu,w
xuyw

u!w!

 ∈ R[[x, y]]. (5.2.3)

For instance, a0,0(λ) = 1, a1,0(λ) = λ1,0, and a2,0(λ) =
1
2 (λ2,0 + λ2

1,0).
We will relate the asymptotic expansion of I(z) for large z to the polynomials as,t. For a

given function h(z), the set O(h(z)) consists of all functions f (z) for which

lim sup
z→∞

| f (z)/h(z)|

is finite. The notation f (z) = g(z)+O(h(z)) means that f (z)− g(z) ∈ O(h(z)). We use the
asymptotic expansion notation f (z) ∼ ∑n≥0 gn(z) to denote f (z)−∑R−1

n=0 gn(z) ∈ O(gR(z))
for all R ≥ 0.

Proposition 5.2.1. If I(z), g, D and the coefficients Λu,w are related as above, then

I(z) ∼ ∑
n≥0

Anz−n,

for large z, where An is the coefficient of z−n in the formal power series

∑
s,t≥0

z−(s+t)(2s− 1)!! · (2t− 1)!! · a2s,2t(z ·Λ) ∈ R[[z−1]] ,

where (2s− 1)!! = (2s− 1)(2s− 3) · · · 3 · 1 and a2s,2t(z ·Λ) is the polynomial a2s,2t(λ) defined
in (5.2.3), with

λu,w =

{
0 for u, w ≥ 0 and 1 ≤ u + w < 3,
z Λu,w for u, w ≥ 0 and u + w ≥ 3.

(5.2.4)

The proof of this proposition uses the classical Laplace method which gives an expression
for the asymptotic expansion of the integral I(z). See e.g. [BV20, App. A] for the proof of
the one-dimensional case.

Proof. Fix an integer R ≥ 0 and any value for γ ∈
( 1

3 , 1
2

)
. We first prove that the integral

I(z) is concentrated in the square B(z) = [−z−γ, z−γ]2 ⊂ D that shrinks for growing z. Let
M(z) = max(x,y)∈D\B(z) g(x, y), then∣∣∣∣I(z)− z

2π

∫
B(z)

exp(zg(x, y))dx dy
∣∣∣∣ = z

2π

∫
D\B(z)

exp(zg(x, y))dx dy

≤ z
2π

exp ((z− 1)M(z))
∫

D
exp(g(x, y))dx dy .

The last integral is finite by requirement. As the origin is the unique global maximum of
g in D, the maximal value M(z) will be attained on the boundary of the square B(z) if z is
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sufficiently large. Near the origin, g(x, y) behaves as − x2

2 −
y2

2 + (higher order terms), so
M(z) = − 1

2 z−2γ +O(z−3γ). Hence,

I(z) =
z

2π

∫
B(z)

exp(zg(x, y))dx dy +O(z exp(−z1−2γ)). (5.2.5)

As γ < 1
2 , we have, in particular, O(z exp(−z1−2γ)) ⊂ O(z−R). So, for the purpose

of finding the asymptotic expansion of I(z) in decreasing powers z0, z−1, z−2, . . . , z−R+1,
integrating only over B(z) as in (5.2.5) is sufficient.

Note that, by (5.2.4), as,t(z ·Λ) is a polynomial of degree at most s+t
3 in z. The function

exp(z( 1
2 x2 + 1

2 y2 + g(x, y))) is analytic for all (x, y) ∈ B(z). Therefore, for each K ≥ 0, there
is a constant C > 0 such that∣∣∣∣∣∣∣exp

z ∑
u,w≥0

u+w≥3

Λu,w
xuyw

u!w!

− ∑
s,t≥0

s+t<K

as,t(z ·Λ)xsyt

∣∣∣∣∣∣∣ ≤ Cz
1
3 K−γK for (x, y) ∈ B(z).

Next, we fix K = 3R
3γ−1 ≥ 0 so that z

1
3 K−γK = z−R, and use (5.2.5) to get

I(z) =
z

2π ∑
s,t≥0

s+t<K

as,t(z ·Λ)
∫

B(z)
e−z x2

2 −z y2
2 xsyt dx dy +O(z−R). (5.2.6)

We want now to extend the integration domain to the whole real plane. For any integer
s ≥ 0, consider the integral

∫ ∞

z−γ
e−z x2

2 xs dx = exp
(
− z1−2γ

2

) ∫ ∞

0
exp

(
−z

x2

2
− z1−γx

)
(z−γ + x)s dx.

For fixed z, the function x 7→ exp(−z1−γx)(z−γ + x)s attains its unique maximum at x =
xmax = szγ−1 − z−γ. If z is sufficiently large we have xmax ≤ 0. Hence, in the range we are

interested in, the integral is decreasing in x, and using
√ z

2π

∫
R

e−z x2
2 dx = 1 we get√

z
2π

∫ ∞

z−γ
e−z x2

2 xs dx ∈ O
(

z−γs exp
(
− z1−2γ

2

))
⊂ O(z−R).

Combining this with (5.2.6) shows that

I(z) =
z

2π ∑
s,t≥0

s+t<K

as,t(z ·Λ)
∫

R2
e−z x2

2 −z y2
2 xsyt dx dy +O(z−R).

Using the Gaussian integral identities√
z

2π

∫
R

e−z x2
2 x2s dx = z−s · (2s− 1)!! and

∫
R

e−z x2
2 x2s+1 dx = 0

for all integers s ≥ 0, proves the statement.

Example 5.2.2. Fix D = [−1, 1]2 and g(x, y) = − x2

2 −
y2

2 + x4

4! + λ
x2y2

4 + λ2 y4

4! with λ ∈
R>0 some arbitrary positive constant. The conditions for Proposition 5.2.1 are fulfilled
and the associated integral I(z) as defined in (5.2.1) has an asymptotic expansion I(z) ∼
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Figure 5.2: An edge-bicoloured graph with two connected components.

∑n≥0 Anz−n. Using the formula from Proposition 5.2.1 and the generating function for the
polynomials as,t from (5.2.3), we find that A0 = 1 and

A1 =
1
8
+

1
4

λ +
1
8

λ2,

A2 =
35

384
+

5
32

λ +
19
64

λ2 +
5

32
λ3 +

35
384

λ4,

A3 =
385

3072
+

105
512

λ +
1295
3072

λ2 +
175
256

λ3 +
1295
3072

λ4 +
105
512

λ5 +
385

3072
λ6. ♢

In the next subsection, we endow the obtained analytic expressions with a combinato-
rial interpretation. This process is inspired by quantum field theory, where perturbative
expansions of observables, which are combinatorially controlled via Feynman graphs, relate
to path integrals. The integral in (5.2.1) can be seen as a path integral for a zero-dimensional
space-time: the integral is then taken over all two-parameter fields on a point, hence an
integral over R2. The associated Feynman graphs are edge-bicoloured graphs. See [Ski18] for
more details on quantum field theory.

5.2.2. Edge-bicoloured graphs
For the purpose of this subsection, a graph is a one-dimensional, finite CW complex, some-
times also called multigraph in the literature. It is edge-bicoloured if each edge has one of
two different colours. We will represent graphs using only discrete data. A (set) partition
P of a finite set H is a set of non-empty and mutually disjoint subsets of H whose union
equals H. The elements of P are called blocks.

Definition 5.2.3. Given two disjoint finite sets S and T of labels, an [S, T]-labelled edge-
bicoloured graph is a tuple Γ = (V, ES, ET), where

1. the vertex set V is a partition of S ⊔ T,

2. ES is a partition of S into blocks of size 2,

3. ET is a partition of T into blocks of size 2.

We think of the elements of S and T as half-edge labels coloured red and yellow, respec-
tively. These half-edges are bundled together in vertices via the partition V. The edge sets
ES and ET pair the half-edges into edges of the respective colour. Every edge-bicoloured
graph without isolated vertices can be represented by at least one [S, T]-labelled graph. All
graphs in this section will be edge-bicoloured, so we will drop this adjective from now on.

Example 5.2.4. Let S = {s1, s2, . . . , s6} and T = {t1, t2}. The partitions

V = {{s1, s2, s3, s4}, {s5, s6, t1, t2}} ,
ES = {{s1, s2}, {s3, s4}, {s5, s6}} ,
ET = {{t1, t2}} ,

form an [S, T]-labelled graph representing the graph depicted in Figure 5.2. ♢
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An isomorphism from an [S1, T1]-labelled graph (V1, E1
S, E1

T) to an [S2, T2]-labelled graph
(V2, E2

S, E2
T) is a pair of bijections jS : S1 → S2, jT : T1 → T2 such that j(V1) = V2, j(E1

S) =
E2

S, and j(E1
T) = E2

T with j being the map that jS and jT canonically induce on the subsets
of S, T, and S ⊔ T. An automorphism of an [S, T]-labelled graph Γ is an isomorphism to
itself. Those form the group Aut(Γ).

Lemma 5.2.5. Each [{1, . . . , 2s}, {1, . . . , 2t}]-labelled graph Γ belongs to an isomorphism class of
such graphs of size (2s)!(2t)!

|Aut(Γ)| .

Proof. For given Γ, let lab(Γ) be the set of [{1, . . . , 2s}, {1, . . . , 2t}]-labelled graphs that are
isomorphic to Γ. The product of symmetric groups S2s×S2t acts on lab(Γ) by permuting
the half-edge labels of the respective colour. Aut(Γ) is the subgroup of S2s×S2t stabilising
Γ. The lemma follows from the orbit stabiliser theorem.

Example 5.2.6. An [S, T]-labelled graph Γ representing the graph depicted in Figure 5.2
has automorphism group isomorphic to (S2×S2 ⋊S2×S2)×S2 ≤ S6×S2, where ⋊
denotes the semidirect product of groups, S6 refers to the six red half-edges in S and S2
to the two yellow half-edges in T. ♢

We write G for the set of isomorphism classes of graphs. For each G ∈ G, we write
VG, EG

S , EG
T , EG = EG

S ⊔ EG
T and Aut(G) for the respective set or group of some [S, T]-

labelled representative of G. The Euler characteristic of G is defined by χ(G) = |VG| − |EG|,
and does not depend on the colouring. The bidegree of a graph’s vertex v ∈ VG is the pair
of integers deg(v) = (u, w) where u counts the number of half-edges in v that lie in the
red-coloured set S and w the half-edges in the yellow-coloured part T. The vertex degree of
v is |deg(v)| = u + w.

Proposition 5.2.7. The generating function for graphs with marked bidegrees is

∑
G∈G

η|E
G |

|Aut(G)| ∏
v∈VG

λdeg(v) = ∑
s,t≥0

ηs+t · (2s− 1)!! · (2t− 1)!! · a2s,2t(λ) ∈ R[[η]],

where as,t is defined as in (5.2.3).

We postpone the proof to after Lemma 5.2.9 and first illustrate the result.

Example 5.2.8. The formula in Proposition 5.2.7 provides a recipe to count our graphs for
a given number of edges, grouping them according to their bidegrees. For instance, the
coefficient of η1 counts graphs with one edge:

∑
G∈G,
|EG |=1

1
|Aut(G)| ∏

v∈VG

λdeg(v) = + + +

=
1
2

λ2,0 +
1
2

λ2
1,0 +

1
2

λ0,2 +
1
2

λ2
0,1.

Using the power series on the right-hand side of Proposition 5.2.7, this can be obtained
simply as a2,0 + a0,2, and by expanding the exponential in (5.2.3), we get exactly the above
expression. If for |EG| = 1 these two approaches may seem equally complicated, already
for graphs with two edges it is clear that the use of the generating function speeds up the
computation. In fact, there are seven (monochromatic) graphs with two edges:

, , , , , , ,
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which turn into 23 edge-bicoloured graphs. On the other hand, a simple expansion of the
exponential function gives

∑
G∈G,
|EG |=2

1
|Aut(G)| ∏

v∈VG

λdeg(v) = 3a4,0 + a2,2 + 3a0,4

= λ0,1λ1,0λ1,1 +
λ4

0,1
8 +

3λ2
0,1λ0,2

4 +
λ2

0,1λ2
1,0

4 +
λ2

0,1λ2,0

4

+
λ0,1λ0,3

2 +
λ0,1λ2,1

2 +
3λ2

0,2
8 +

λ0,2λ2
1,0

4 + λ0,2λ2,0
4 +

λ0,4
8 +

λ4
1,0
8

+
3λ2

1,0λ2,0

4 +
λ1,0λ1,2

2 +
λ1,0λ3,0

2 +
λ2

1,1
2 +

3λ2
2,0

8 + λ2,2
4 +

λ4,0
8 . ♢

To prove Proposition 5.2.7, we use the following lemma on the number of partitions of
a set where elements come in two different colours. Let S = {1, . . . , s} and T = {1, . . . , t}
and Ps,t the set of partitions of the disjoint union S ⊔ T. For each block B of a partition
P ∈ Ps,t we define the bidegree deg(B) of the block to be the pair of integers (u, w) where
u is the number of elements from S and w the number of elements from T in B.

Lemma 5.2.9. Given s, t ≥ 0, consider a set of nonnegative integers nu,w indexed by pairs u, w
with 0 ≤ u ≤ s, 0 ≤ w ≤ t, u + w ≥ 1, such that

∑
u

u · nu,w = s, ∑
w

w · nu,w = t.

The number of partitions in Ps,t with exactly nu,w blocks of bidegree (u, w) is

s!t!
∏u,w nu,w!(u!)nu,w(w!)nu,w

.

Proof. The group Ss×St acts on Ps,t by permuting the elements of S and T, respectively.
This action is transitive if we restrict to partitions with specific block bidegree set {nu,w}u,w.
A specific partition with given block bidegrees is stabilised by the subgroup that permutes
the elements inside each block and blocks of the same size. This subgroup is isomorphic
to (Su×Sw)nu,w ⋊Snu,w . The claim follows from the orbit stabiliser theorem.

Proof of Proposition 5.2.7. From (5.2.3), and eX = ∑n≥0
Xn

n! , we get

s! · t! · as,t(λ) = ∑
{nu,w}

s!t!
∏u,w nu,w!(u!)nu,w(w!)nu,w ∏

u,w≥0
u+w≥1

λ
nu,w
u,w , (5.2.7)

where the sum is over all sets of integers {nu,w} that satisfy the conditions for Lemma 5.2.9
with respect to s and t.

We can match the elements of the set S = {1, . . . , 2s} among each other in (2s− 1)!!
ways and the ones of T = {1, . . . , 2t} analogously. So, by Definition 5.2.3, Lemma 5.2.9,
and (5.2.7), the number of [S, T]-labelled graphs with exactly nu,w vertices of bidegree u, w
is (2s− 1)!! · (2t− 1)!! times the coefficient of the monomial ∏u,w λ

nu,w
u,w in the polynomial

(2s)! · (2t)! · a2s,2t(λ) ∈ R. The statement follows then from Lemma 5.2.5.

Our first main result follows from combining Propositions 5.2.1 and 5.2.7.

Theorem 5.2.10. If I(z), g, D and the coefficients Λu,w are related as in Subsection 5.2.1, then the
integral in (5.2.1) has the asymptotic expansion

I(z) ∼ ∑
n≥0

Anz−n,
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for large z, with the coefficients An given by

An = ∑
G∈G⋆−n

1
|Aut(G)| ∏

v∈VG

Λdeg(v),

where we sum over the set G⋆−n of all isomorphism classes of edge-bicoloured graphs with vertex
degrees at least 3 and Euler characteristic equal to −n.

Proof. Using the fact that χ(G) = |VG| − |EG| we rewrite

∑
n≥0

Anz−n = ∑
G∈G⋆−n

zχ(G)

|Aut(G)| ∏
v∈VG

Λdeg(v) = ∑
G∈G⋆−n

z−|E
G |

|Aut(G)| ∏
v∈VG

z ·Λdeg(v).

Applying Proposition 5.2.7 for λu,w as defined in (5.2.4), this is further equal to

∑
s,t≥0

z−(s+t) · (2s− 1)!! · (2t− 1)!! · a2s,2t(λ).

By Proposition 5.2.1, this is the large-z asymptotic expansion of I(z).

Example 5.2.11. Continuing Example 5.2.2, let c(k)n be the coefficient of λk in An. By The-
orem 5.2.10, c(k)n counts automorphism-weighted graphs with Euler characteristic −n and
vertex degree four, such that k1 vertices have exactly two yellow half-edges and k2 vertices
have four yellow half-edges, so that k1 + k2 = k. We can view this explicitly for n = 2,
as follows. Among the 21 (monochromatic) graphs with χ = −2, there are only three
4-regular graphs. These are , , . Considering all bicolourings, we get

c(0)2 = + + = 1
128 +

1
48 +

1
16 = 35

384 ,

c(1)2 = + = 1
32 +

1
8 = 5

32 ,

c(2)2 = + + + + = 1
64 +

1
32 +

1
8 +

1
16 +

1
16 = 19

64 ,

c(3)2 = + = 1
32 +

1
8 = 5

32 ,

c(4)2 = + + = 1
128 +

1
48 +

1
16 = 35

384 . ♢

Remark 5.2.12 (Ising model). Our examples are motivated from the physical Ising model.
The partition function of the critical Ising model on a specific monochromatic graph G (not
necessarily lattice-like) is defined by

Z(G, λ) = ∑
γ⊂G

γ Eulerian

λ|E(γ)|,

where we sum over all Eulerian subgraphs γ of G (see e.g. [Cim12]). This means that if
we delete all edges of G that are not in γ, then the resulting graph shall only have vertices
of even degree. A pair (G, γ) of a monochromatic graph G and an Eulerian subgraph
γ ⊂ G is equivalent to an edge-bicoloured graph in which an even number of yellow
edges belongs to each vertex.
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Notice that we effectively designed the polynomial g(x, y) from Example 5.2.2 and
equivalently the coefficients Λu,w, such that the coefficient of λk in An is the automorphism-
weighted number of 4-regular graphs with k yellow edges where an even number of yellow
edges belong to each vertex.

Hence, with An as defined in Example 5.2.2, we find that

An = ∑
G

Z(G, λ)

|Aut G| ,

where we sum over all monochromatic graphs G that are 4-regular and which have Euler
characteristic −n. We can thus interpret An as the partition function of the critical Ising
model of a random 4-regular monochromatic graph of fixed Euler characteristic. Here,
random means that each monochromatic graph G is sampled with probability 1/|Aut G|.

5.2.3. Efficient computation of the coefficients An

In this subsection, we describe an effective algorithm to compute the coefficients An that
encode the asymptotic expansion of the integral (5.2.1), and the weighted numbers of
edge-bicoloured graphs of Euler characteristic −n, by Theorem 5.2.10. The algorithm is
implemented in Julia and is available at [KLW24b].

Proposition 5.2.13. For a given integer n ≥ 1, and the coefficients Λu,w as required by Theo-
rem 5.2.10, the following algorithm correctly computes A0, . . . , An:

Step 1: Define the polynomials

Fk(x, y) = ∑
u,w≥0

u+w=k+2

Λu,w
xuyw

u!w!
for k ∈ {1, . . . , 2n};

Step 2: set Q0(x, y) = 1 and recursively compute Q1, . . . , Q2n using

Qm(x, y) =
1
m

m

∑
k=1

kFk(x, y)Qm−k(x, y) for m ∈ {1, . . . , 2n};

Step 3: let q(k)s,t be the coefficients of Qk(x, y) = ∑s,t≥0 q(k)s,t xsyt. Then,

Ak = ∑
s,t≥0

(2s− 1)!! · (2t− 1)!! · q(2k)
2s,2t for k ∈ {0, . . . , n}.

To run the algorithm with a fixed n, it is sufficient to know Λu,w for all u, w ≥ 0 with
u + w ≤ 2n + 2. Also, recall that we require Λu,w = 0 if u + w < 3.

Proof. By Proposition 5.2.1, we have this identity of power series in z−n:

∑
n≥0

Anz−n = ∑
s,t≥0

z−(s+t) · (2s− 1)!! · (2t− 1)!! · a2s,2t(z ·Λ),

where as,t(z ·Λ) is as described in Proposition 5.2.1 and (5.2.3):

∑
s,t≥0

as,t(z ·Λ)xsyt = exp

z ∑
u,w≥0

u+w≥3

Λu,w
xuyw

u!w!

 .
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Rescaling (x, y) 7→ (x/
√

z, y/
√

z) in the above formula gives the following identity of
power series in R[x, y][[z−1/2]],

∑
s,t≥0

z−
s+t

2 as,t(z ·Λ)xsyt = exp

(
∑
k≥1

z−
k
2 Fk(x, y)

)
, (5.2.8)

where we used the definition of Fk(x, y) in the statement. Let q(k)s,t be the coefficients

∑k≥0 q(k)s,t z−
k
2 = z−

s+t
2 as,t(z · Λ). With this definition, (5.2.8) and the formula under Step 3

in the statement correctly compute Ak.
It remains to prove that the coefficients q(k)s,t are computed correctly by Step 2 in the

statement. Rewrite (5.2.8) using the definition of Qk(x, y), before applying the derivative
operator z ∂

∂z on both sides. This gives

z
∂

∂z

(
∑
k≥0

Qk(x, y)z−
k
2

)
= z

∂

∂z
exp

(
∑
k≥1

z−
k
2 Fk(x, y)

)

⇒ −∑
k≥0

k
2

Qk(x, y)z−
k
2 = −

(
∑

m≥0
Qm(x, y)z−

m
2

)
∑
k≥1

k
2

z−
k
2 Fk(x, y).

The recursive relation between Qm and Fk follows by comparing the z−
m
2 coefficients on

both sides of this equation.

5.2.4. Asymptotics and critical points
In this subsection, we study the asymptotic behaviour of the coefficients An in Theo-
rem 5.2.10 for large n. Here, we will restrict ourselves to regular edge-bicoloured graphs,
meaning that each vertex has a fixed degree k ≥ 3. For fixed coefficients Λu,w given for
u, w ≥ 0 with u + w = k, we study the weighted sum over graphs

An = ∑
G∈Gk

−n

1
|Aut(G)| ∏

v∈VG

Λdeg(v),

where Gk
−n is the set of all regular (edge-bicoloured) graphs with vertex degree k and Euler

characteristic −n. As for each k-regular graph G we have k|VG| = 2|EG|, all graphs in Gk
−n

have 2n
k−2 vertices and nk

k−2 edges. It is convenient to define the homogeneous polynomial

V(x, y) = g(x, y) +
x2

2
+

y2

2
= ∑

u,w≥0
u+w=k

Λu,w
xuyw

u!w!
∈ R[x, y].

Let Φ be the set of global maxima of the function

S1 = {(x, y) ∈ R2 : x2 + y2 = 1} → R≥0, (x, y) 7→ |V(x, y)|.

A point (x, y) ∈ Φ is nondegenerate if k2V(x, y) ̸=
(

∂2V
∂x2 (x, y) + ∂2V

∂y2 (x, y)
)

.

Proposition 5.2.14. Let M = k
k−2 and K = 2

k−2 . If An, V, Λu,w and Φ are related as described
above and all extrema in Φ are nondegenerate, then

An ∼


1

2
√

2π
knM+ 1

2 Kn− 1
2 Γ(n) ∑

(x,y)∈Φ

V(x,y)nK√
B(x,y)

if nK, nM ∈ Z,

0 else,
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where Γ denotes the Gamma function and

B(x, y) = k2 −
∂2V
∂x2 (x, y) + ∂2V

∂y2 (x, y)

V(x, y)
for (x, y) ∈ S1.

We will prove this theorem by first proving an integral representation of the coefficients
An. Afterwards, we apply the one-dimensional Laplace method to provide an asymptotic
expression for this integral in the large-n limit.

Lemma 5.2.15. Let M = k
k−2 and K = 2

k−2 . For a given integer n ≥ 0 such that nK and nM are
integers, we have

An =
2nM(nM)!
2π · (nK)!

∫ π

−π
V(cos φ, sin φ)nK dφ.

If nK or nM is not an integer then An = 0.

Proof. A k-regular graph has nM edges and nK vertices, so nM and nK must be integers;
otherwise An = 0. We will assume the former. By Proposition 5.2.7,

An = ∑
s,t≥0

s+t=nM

(2s− 1)!! · (2t− 1)!! · a2s,2t(Λ).

If s + t = nM, it follows from (5.2.3) that a2s,2t(Λ) is a homogeneous polynomial of degree
nK. Because exp(X) = ∑N≥0

XN

N! , it also follows that a2s,2t(Λ) is the coefficient in front of

x2sy2t in the quotient V(x, y)nK/(nK)!, since V is homogeneous. Using 1√
2π

∫
R

e−
x2
2 x2s dx =

(2s− 1)!! and
∫

R
e−

x2
2 x2s+1 dx = 0 for integers s, we obtain

An =
1

2π · (nK)!

∫
R2

e−
x2
2 −

y2
2 V(x, y)nK dx dy.

We can pass to polar coordinates and use V(rx, ry) = rkV(x, y), together with∫ ∞

0
e−

r2
2 rnkK+1 dr =

∫ ∞

0
e−q(2q)nkK/2 dq = 2nM(nM)!

to prove the lemma.

Proof of Proposition 5.2.14. We are interested in the cases in which An ̸= 0. When n is large,
the main contribution to the integral in the statement of Lemma 5.2.15 comes from angles
φ where |V(cos φ, sin φ)| is maximal. Let φc be the location of such a maximum. By
definition, we have (cos φc, sin φc) ∈ Φ. Near this maximum, we get the Taylor expansion

fφc(φ) := log
V(cos φ, sin φ)

V(cos φc, sin φc)
= −B(cos φc, sin φc)

(φ− φc)2

2
+O((φ− φc)

3),

where B(cos φc, sin φc) is defined as in the statement. Because φc is a maximum of
|V(cos φc, sin φc)|, we have B(cos φc, sin φc) ≥ 0. Our assumption that all the maxima
are nondegenerate hence implies that B(cos φc, sin φc) > 0.

We may therefore write, for some sufficiently small ε > 0,

An =
2nM(nM)!
2π · (nK)!

 ∑
(cos φc,sin φc)∈Φ

V(cos φc, sin φc)
nK
∫ φc+ε

φc−ε
enK fφc (φ) dφ

+ R1(n, ϵ).
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λ = 2

λ = 1
3

λ = 3

Figure 5.3: The system (5.2.9) for the function V from Example 5.2.16. Left: all values of
λ ∈ (0, 4) on the (reversed) vertical axis. At each level λ = const. the black continuous
curves are the maxima; the dashed curves are the minima. In blue, the curves for λ = 1

3
and λ = 3 where the behaviour of the maxima changes. Right: the section λ = 2, with its
maxima (squares) and its minima (crosses).

From the Taylor expansion of the function fφc(φ) and Lemma 5.2.15, it follows by the same
reasoning as in the proof of Proposition 5.2.1 that the remainder term respects the bound
|R1(n, ε)| ≤ C1 exp(−C2nε2) with some constants C1, C2 > 0. Specifying ε = n−γ with
γ ∈ ( 1

3 , 1
2 ) allows us to truncate the Taylor expansion of fφc after the second term without

changing asymptotic behaviour in the n→ ∞ limit. Hence,∫ φc+ε

φc−ε
enK fφc (φ) dφ =

∫ ε

−ε
exp

(
−nK

B(cos φc, sin φc)

2
φ2
)

dφ + R2(n, ε).

The remainder term satisfies |R2(n, ε)| < C3n
1
2 ε3 for some C3 > 0. Again, as in the proof

of Proposition 5.2.1, we may complete the Gaussian integral to find that

∫ φc+ε

φc−ε
enK fφc (φ) dφ =

√
2π

nK · B(cos φc, sin φc)
+O(n−1).

The result follows from Stirling’s formula Γ(n) ∼
√

2πn−1nne−n as n→ ∞.

Example 5.2.16. To continue the running example of the Ising model (cf. Example 5.2.11),

let V(x, y) = x4

4! + λ
x2y2

4 + λ2 y4

4! . We want to find the critical points of V on the circle, that
means the points (x, y) ∈ R2 with x2 + y2 = 1 satisfying

y
∂V
∂x

(x, y) = x
∂V
∂y

(x, y). (5.2.9)

We get the following eight critical points:

(±1, 0), (0,±1),

(
±
√

λ(λ− 3)√
λ2 − 6λ + 1

,±
√

1− 3λ√
λ2 − 6λ + 1

)
∈ R2. (5.2.10)

Our case of interest is λ > 0. Then, the last four points are real if and only if λ ∈ [ 1
3 , 3],

and in that interval those are the maxima of |V| on S1. For λ < 1
3 , the maxima are

(±1, 0), whereas for λ > 3, the maxima are (0,±1). Figure 5.3 displays the function
(V(x, y)x, V(x, y)y) and its critical points, for λ ∈ (0, 4).

We can now use Proposition 5.2.14 to find An ∼ c Γ(n)αn, where c = c(λ) and α = α(λ)
are piecewise defined as
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α(λ) c(λ)

0 < λ < 1
3

2
3

1
π

√
1

2−6λ

1
3 < λ < 3 −16λ2

3λ2−18λ+3
1
π

√
8λ

−3λ2+10λ−3

λ > 3 2λ2

3
1
π

√
λ

2λ−6

The function α is continuous, it is not C1-differentiable at λ = 1
3 , and it is C1- but not

C2-differentiable at λ = 3. On the other hand, the limits of c(λ) at 1
3 and 3 go to infinity

from both sides. This can be observed in Figure 5.4. The points λ = 1
3 and λ = 3 where

the functions α(λ) and c(λ) are non-analytic are phase transition points. Phase transitions
are of pivotal interest in statistical physics. Here, we find the phase transitions of the Ising
model on a random 4-regular graph. In each of the three regions for the parameter λ, the
statistical system is expected to exhibit intrinsically different behaviours.

Note that using Proposition 5.2.13 we can also compute An for large n and solve for α
and c numerically. For details see our implementation at [KLW24b]. ♢

Figure 5.4: The behaviour of α(λ) and c(λ) in the Ising model from Example 5.2.16. The
phase transitions at λ = 1

3 , 3 can be detected in both quantities. At λ = 3, the function α is
C1- but not C2-differentiable.

It is common belief in physics that the asymptotic behaviour of An depends on the
critical points of g(x, y) = − x2

2 −
y2

2 + V(x, y) (see e.g. [LGZJ12]). Moreover, it is well-
known, also in applied mathematics, that identifying the critical point which contributes
most to the asymptotics is a complicated connection problem [BH90]. Therefore, we rephrase
Proposition 5.2.14 in terms of the critical points of g instead of those of V restricted to the
sphere. We write critD f for the set of critical points of f restricted to the domain D. Let

Ψ =
{
(w, z) ∈ critC·R2 g\{0} : ∥(w, z)∥ ≤ ∥(w′, z′)∥ ∀(w′, z′) ∈ critC·R2 g\{0}

}
,

where C ·R2 is the set of complex points (w, z) whose ratio (if well-defined) is real. Points
in Ψ are called nondegenerate if the Hessian matrix Hg(w, z) of g at (w, z) has full rank.

Theorem 5.2.17. Assume that An, g, and Ψ are related as described above and all extrema in Ψ
are nondegenerate. Then

An ∼
1

2π
Γ(n) ∑

(w,z)∈Ψ

(−g(w, z))−n√
−det Hg(w, z)

. (5.2.11)
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Proof. Our goal is to express An from Proposition 5.2.14 in terms of the critical points of g.
The first step is to associate the critical points of V to those of g. Given (x, y) ∈ critS1(V),
we look for some ℓ ∈ C∗ such that (ℓx, ℓy) ∈ critC·R2(g). Imposing the conditions ℓx =
∂V
∂x (ℓx, ℓy), ℓy = ∂V

∂y (ℓx, ℓy), and using homogeneity of V, we get

ℓ2−k = kV(x, y). (5.2.12)

Therefore, as k ≥ 3,

max
(x,y)∈critS1 (V)

V(x, y) =
1
k

(
min

(w,z)∈crit
C·R2 (g)

∥(w, z)∥
)2−k

,

so every element (w, z) ∈ Ψ ⊂ C ·R2 arises as (ℓx, ℓy) for some (x, y) ∈ Φ.
Using these considerations, we write the result from Proposition 5.2.14 in terms of the

critical points of g. At a point (w, z) = (ℓx, ℓy) ∈ Ψ, by (5.2.12), we have

g(w, z) = − ℓ2

2
+ V(w, z) = − ℓ2

2
+ ℓkV(x, y) = ℓ2 2− k

2k
. (5.2.13)

Let K = 2
k−2 and M = k

k−2 . Then, we have

V(x, y)nK = k−nKℓ−2n = k−nK(−kKg(w, z))−n = k−nMK−n(−g(w, z))−n.

This allows to cancel prefactors in the asymptotic expression for An from Proposition
5.2.14. We are left to rewrite B in terms of (w, z). Notice that the determinant of the
Hessian of g(w, z) can be expressed, using (5.2.12), as

det Hg(w, z) =
1
ℓ2 det Hg(ℓx, ℓy) = B(x, y)ℓk−2V(x, y)(1− k(k− 1)ℓk−2V(x, y))

= −B(x, y)
k− 2

k
,

where (ℓ, x, y) are new coordinates on C∗ × S1, and (w, z) ∈ Ψ. Hence,

An ∼
1

2
√

2π
knM+ 1

2 Kn− 1
2 Γ(n) ∑

(x,y)∈Φ

V(x, y)nK√
B(x, y)

=
1

4π

√
k(k− 2)Γ(n)

2
k− 2 ∑

(w,z)∈Ψ

(−g(w, z))−n√
− k det Hg(w,z)

k−2

=
1

2π
Γ(n) ∑

(w,z)∈Ψ

(−g(w, z))−n√
−det Hg(w, z)

,

where the factor 2
k−2 appears since each of the k − 2 points {(w, z) = (ℓx, ℓy)} in Ψ is

counted twice by the corresponding points {(x, y), (−x,−y)} ∈ Φ.

Remark 5.2.18. The formula (5.2.11) yields 0 if nM or nK are not integers. Indeed, using
(5.2.13) from the proof above, we can write, for (w, z) ∈ Ψ,

g(w, z) = (l · ζi)
2 2− k

2k
, i ∈ {1, ..., k− 2},
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−3 3

−11

11

λ = 1
4

−3 3

−6

6

λ = 1
2

−3 3

−1

1

λ = 4

Figure 5.5: The system (5.2.14) for the function V from Example 5.2.19, for the values
λ = 1

2 , 1
4 , 4, from left to right. The solutions are marked in black. The solutions that are

(equally) closest to (but distinct from) the origin, are marked with squares. Notice the
different scaling in the y-axis, for the sake of clarity.

where l ∈ R and ζi is a (k− 2)th root of unity, so (w, z) = (lζix, lζiy) for some (x, y) ∈ Φ.
Also, (lζ jx, lζ jy) ∈ Ψ for all j ∈ {1, . . . , k− 2}. Therefore, the sum in (5.2.11) becomes

∑
(w,z)∈Ψ

(−g(w, z))−n√
−det Hg(w, z)

∝
k−2

∑
j=1

(
l · ζ j

)−2n
(

k−2
k

)−n

√
−det Hg(lζ jx, lζ jy)

=

 (k− 2)
l−2n( k−2

k )
−n

√
−det Hg(lx,ly)

if (k− 2) | 2n,

0 else.

The condition (k− 2) | 2n is equivalent to nK ∈ Z, which also implies nM ∈ Z.

We exhibit the connection between the two collections Φ and Ψ of critical points ex-
plicitly in our running example.

Example 5.2.19. Let V(x, y) = x4

4! +λ
x2y2

4 +λ2 y4

4! and g(x, y) = − x2

2 −
y2

2 +V(x, y). Consider
the system of critical equations for g

w =
∂V
∂w

(w, z), z =
∂V
∂z

(w, z), (5.2.14)

and its complex nontrivial solutions, for λ > 0:

(±
√

6, 0),

(
0,±
√

6
λ

)
,

(
±
√

9− 3λ

4λ
,±
√

9λ− 3
2λ

)
.

Among these solutions, some are real for every λ > 0. The last type of singular points is
real if and only if λ ∈ [ 1

3 , 3]. We get

Ψ =


(±
√

6, 0) 0 < λ < 1
3 ,(

±
√

9−3λ
4λ ,±

√
9λ−3
2λ

)
1
3 < λ < 3,(

0,±
√

6
λ

)
λ > 3.

This is displayed in Figure 5.5. The reader may check that rescaling each point in Ψ to unit
vector gives precisely two of the points in (5.2.10). ♢
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Remark 5.2.20. Lee–Yang theory studies the location of the roots of the polynomials
An, when n becomes large. This fascinating theory touches combinatorics, statistics and
physics (see e.g. [BB09] for an overview). In the spirit of Lee–Yang theory, the two phase
transitions λ = 1

3 , 3 in the running example can be detected also by looking at the asymp-
totic behaviour of the roots of An(λ) as n → ∞. Using our algorithm from Proposition
5.2.13, we can compute the polynomials An(λ) and find their roots numerically. This is the
content of Figure 5.6. The roots of these polynomials are all complex (except for λ = −1,
for odd n) but they get closer and closer to the real values λ = 1

3 and λ = 3.

Figure 5.6: The roots of An(λ) under the assumptions of Example 5.2.2, for n = 10, 25, 200.
The blue crosses are the phase transitions λ = 1

3 , 3.

Although Proposition 5.2.14 and Theorem 5.2.17 assume V to be homogeneous, the
following example shows that this condition does not seem to be necessary.

Example 5.2.21. Take the inhomogeneous polynomial V(x, y) = x3

3! + λ
xy2

2 + λ2 y4

4! , with
λ > 0. For λ < 1

2 , one can compute that Ψ = {(2, 0)}; for λ > 1
2 , one gets

Ψ =

{(
4λ−
√

2λ(8λ−3)
λ ,±

√
6

√
1−(4λ−

√
2λ(8λ−3) )

λ2

)}
.

The formula for An from Theorem 5.2.17 would give

α(λ) c(λ)

0 < λ < 1
2

3
2

1
2π
√

1−2λ

λ > 1
2

6λ2

(8λ−3)
(

16λ−3−4
√

2λ(8λ−3)
) 1

π

√
λ

32λ2−12λ+2
√

2λ(8λ−3)(1−16λ2)

This matches our numerical computations, see [KLW24b]. ♢

Based on the previous example and similar computations, we conjecture that Theorem
5.2.17 is also valid for inhomogeneous V(x, y), i.e. graphs that are not necessarily regular.
In this setting, the univariate Laplace method as used in the proof of Proposition 5.2.14
does not work any more, also due to the failure of Lemma 5.2.15. Instead, a multivariate
saddle point method shall be required.
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Conjecture 5.2.22. Let g and An be related as in the beginning of Subsection 5.2.1 (i.e. g(x, y) +
x2

2 + y2

2 is not necessarily homogeneous). Let Ψ be defined as before and assume that all points in
Ψ are nondegenerate. Then,

An ∼
1

2π
Γ(n) ∑

(w,z)∈Ψ

(−g(w, z))−n√
−det Hg(w, z)

as n→ ∞.

5.3. Conclusion
In this chapter we have explored several connections between nonlinear algebra and quan-
tum physics. In the context of quantum information theory, we have seen how we can
associate algebraic varieties to quantum graphical models, providing a new approach to
studying the structure of quantum states satisfying constraints on the mutual information
between subsystems or their locality. The different approaches to construct such algebraic
varieties presented in Section 5.1 yield different varieties; it is yet to be seen which one
of them is most useful from the physics perspective. Moreover, all of these approaches
pose very challenging computational problems. It would be interesting to try applying
recently improved algorithms for numerical implicitisation [CH23] to compute algebraic
varieties associated to quantum graphical models with at least four nodes. Our algebraic
perspective proves useful in analysing quantum information projections to quantum ex-
ponential families (Theorem 5.1.34). It remains an open problem to extend this result to
more general families of Hamiltonians giving rise to quantum exponential families.

In the very last section we have seen how techniques from perturbative quantum field
theory inspire enumeration methods of edge-bicoloured graphs. Besides Conjecture 5.2.22
generalising our main result about the asymptotic number of regular edge-bicoloured
graphs to nonregular graphs, there is another open problem for future research: gen-
eralising 5.2.17 to graphs with more than two edge colours. The latter problem causes
challenges because critical loci might be higher dimensional. This analysis then leads to
Picard–Lefschetz theory [DH02].
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