
STABLE POINTED CURVES AND STABLE MAPS

MAXIMILIAN WIESMANN

Abstract. The goal of this talk is to introduce Gromov–Witten invariants. To do so, we will
introduce stable pointed curves, stable maps and their moduli spaces. In the end we will list
important properties of GW invariants. The talk follows §2.1 in [1].

1. Stable pointed curves

The idea of Gromov–Witten (GW) invariants is to count curves of a given type inside a manifold
which intersect a given set of submanifolds. It turns out that the “correct” notion of curve in this
context is the following.

Definition 1.1. A stable n-pointed curve is a tuple (C, x1, . . . , xn) such that
• C is a (possibly reducible) proper, reduced, connected, algebraic curve over an algebraically
closed field with at most nodal singularities;

• x1, . . . , xn ∈ C are pairwise distinct points not coinciding with any of the nodes;
• the automorphism group Aut(C, x1, . . . , xn) is finite.

Here, an isomorphism of n-pointed curves (C, x1, . . . , xn) and (C ′, x′1, . . . , x
′
n) is an isomorphism

φ : C → C ′ with φ(xi) = x′i for i = 1, . . . , n. By the genus of a stable curve we mean the arithmetic
genus of C.

The third condition of having finite automorphisms is necessary to ensure that the moduli space
of stable curves will be compact. Let us derive an equivalent, more geometric condition (for now
let us work over C, but I believe one can also show this in positive characteristic).

Lemma 1.2. Let C be a smooth, projective, irreducible curve over C. Then Aut(C, x1, . . . , xn) is
finite ⇔ 2g − 2 + n > 0.

Proof. There is an open embedding Aut(C) ↪→ Hilb(C × C) by mapping an automorphim φ to its
graph Γφ. Then we get

TidAut(C) ∼= T∆Hilb(C × C) ∼= Hom(I∆,O∆) ∼= H0(∆,N∆/C×C) ∼= H0(C, TC), (⋆)

where ∆ = Γid is the diagonal. Let ωC be the canonical sheaf of C and let m > 0 be so that ω⊗m
C

is very ample. Then we have an embedding C ↪→ P(Γ(C,ω⊗m
C )). The action of Aut(C) extends to

P(Γ(C,ω⊗m
C )) via

φ : Γ(C,ω⊗m
C ) → Γ(C,ω⊗m

C ), s 7→ s ◦ φ.
Thus there is an embedding ι : Aut(C) → PGL(Γ(C,ω⊗m

C )); let G denote the closure of its image.
Suppose Aut(C) is infinite, so G has positive dimension. Then there exists a 0 ̸= v ∈ TidG, which
gives a nonzero v ∈ TidAut(C) and thus a nonzero global section of TC by (⋆). This implies
deg(ωC) = 2g − 2 < 0 and thus we have shown g ≥ 2 ⇒ Aut(C) is finite.

Now suppose g = 0, so C ∼= P1 and Aut(P1) = PGL2(C); explicitly

PGL2(C) =
{(

a b
c d

)
∈ P(Mat(2× 2,C)) : ad− bc ̸= 0

}
.

This group is well-known to be 3-transitive, so we need n ≥ 3 to get finite automorphisms.
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Figure 1. Construction of a nontrivial family F over a base scheme B via gluing
along a nontrivial automorphism.

Lastly, consider the case g = 1, so C = E is an elliptic curve. Then Aut(E) ∼= E(C) ⋊ G for
G ∈ {Z/2Z,Z/4Z,Z/6Z}. Moreover, it is known that E(C) acts simply transitively on E, showing
that for n ≥ 1 the automorphism group is finite. □

Using this Lemma, we can give a geometric characterisation what it means for a pointed curve
to be stable.

Proposition 1.3. Let C be a connected, projective curve over C with at most nodal singularities

and let x1, . . . , xn be n distinct smooth points. Moreover, let ν : C̃ → C be the normalization of C

and call a point p ∈ C̃ distinguished if ν(p) is either a node or one of the points x1, . . . , xn. Then

(C, x1, . . . , xn) is stable if and only if every irreducible component C̃c ⊆ C̃ of the normalization
satisfies either of the following conditions:

• C̃c has genus 0 and contains at least 3 distinguished points; or

• C̃c has genus 1 and contains at least 1 distinguished point; or

• C̃c has genus at least 2.

Proof. This is essentially a consequence from the Lemma above. Confer [3, Prop. 3.13] for details.
□

Let us now consider the moduli functor between the category of schemes and the category of
sets given by

S 7→

 isomorphism classes of flat families C → S with sections
σ1, . . . , σn : S → C such that (Cs̄, σ1(s̄), . . . , σn(s̄)) is a stable
n-pointed genus g curve for every geometric point s̄ of S

 .

Ideally, this functor would be representable by a scheme Mg,n, constituting a fine moduli space
of stable n-pointed curves of genus g, coming with a universal family. Unfortunately, this is not
the case, as the existence of non-trivial automorphisms prevents the moduli functor from being
representable by a scheme. A heuristic argument why this is the case is as follows: Suppose there
exist non-trivial automorphisms on the families we want to parametrise. The idea is to find a base
scheme B with a covering B = ∪iUi and construct a nontrivial family F over B such that FUi is
trivial for all i but the gluing

FUi |Ui∩Uj
∼= FUj |Ui∩Uj

is done via some nontrivial automorphism, see Figure 1. Now suppose there is a scheme M rep-
resenting the moduli functor and coming with a universal family U . Then the map from B to M
factors over the Ui and therefore the pullback of U is trivial, contradicting the nontriviality of F .
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Instead, the moduli space Mg,n is an irreducible, proper, smooth Deligne–Mumford (DM) stack.
In the spirit of [1], we will not define what a stack is. One can think of a smooth DM stack
as an object that locally looks like the quotient of a smooth scheme by a finite group. Many
scheme-theoretic constructions are also defined for DM stacks, in particular Chow groups and
intersection products are defined. But one has to be careful here: Chow groups are only defined
over the rational numbers. Particularly, for a smooth DM stack X, the intersection product is a

map Ai
Q(X)×Aj

Q(X) → Ai+j
Q (X) and can yield rational intersection numbers.

Example 1.4. Consider the group G = Z/2Z acting on A2 via (−1).(x, y) = (−x,−y). The affine

quotient A2/G is defined by taking Spec of the invariant ring, i.e. A2/G = Spec(C[x, y]Z/2Z) =
Spec(C[x2, xy, y2]). The stack quotient [A2/G] comes with a natural map

[A2/G] → A2/G

which is an isomorphism away from the origin. At the origin, the stack quotient [A2/G] “remem-
bers” the non-trivial stabilizer Z/2Z. Note that while A2/G is singular, [A2/G] is a smooth DM
stack.

Similarly, consider G = Z/2Z acting on P2 via (−1).(x, y, z) = (−x,−y, z). Let π : P2 → [P2/G]
be the projection, let L1, L2 denote the lines given by x = 0 and y = 0 and let D1 and D2 be their
images in [P2/G]. One can define the intersection number of D1 and D2 at P as

1

|G|
∑

Q∈π−1(P )

iQ

where iQ is the intersection number of L1 and L2; this yields D1 ·D2 =
1
2L1 · L2 =

1
2 .

Intersection theory being defined over the rationals will also have consequences for GW invariants:

Warning 1.5. Although GW invariants are interpreted as curve counts, they are rational numbers
in general.

Let us look at some examples of moduli spaces of stables curves.

Example 1.6. (1) As a consequence of Proposition 1.3, M0,n is empty for n ≤ 2 and M0,3 is
a single point.

(2) Consider the space M0,n, the open subset of M0,n corresponding to smooth curves with
n points, for n ≥ 3: take a curve (C, x1, . . . , xn) of genus 0, then (C, x1, . . . , xn) ∼=
(P1, 0, 1,∞, x′4, . . . , x

′
n) via some unique map in PGL2(C). The points x′4, . . . , x

′
n are again

pairwise distinct and also distinct from {0, 1,∞}. Therefore, we obtain

M0,n
∼= (P1 \ {0, 1,∞})n−3 \∆ for n ≥ 3

where ∆ = {(pi)i : ∃i ̸= j such that pi = pj} is the big diagonal. Note that M0,n is always
a scheme as n-pointed rational curves with n ≥ 3 have no automorphisms.

(3) Let us look at the case M0,4. We know it contains M0,4
∼= P1 \ {0, 1,∞}; at the boundary,

the smooth P1 with 4 marked points can break up into two irreducible components, each
containing 2 marked points and 1 nodal singularity to retain stability, in one of the three
ways depicted in Figure 2. Therefore, M0,4

∼= P1, and as this is a fine moduli space it comes
with a universal family obtained in the following way: consider the trivial P1-bundle over
P1 with the 0-, 1- and ∞-sections, denoted σ1, σ2, σ3, and the diagonal section σ4. Then
the universal family is the blow up of P1 × P1 at the three points where σ4 intersects σ1, σ2
or σ3. Intuitively speaking, every time the fourth marked point x4 approaches one of the
other marked points, we have to bubble off a copy of P1.

(4) Let π : C0,n → M0,n denote the universal family, also calles universal curve. Then M0,n+1
∼=

C0,n, see [3, Thm. 4.22]. In particular, we have M0,5
∼= Bl(0,0),(1,1),(∞,∞)P1 × P1.
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Figure 2. The stable singular curves in M0,4

Actually, this holds in more generality: let πn+1 : Mg,n+1 → Mg,n be the map that forgets

about the last marked point. Then πn+1 is the universal curve over Mg,n (note that this is
in general not a map of schemes though).

(5) The space M1,1 is given by the j-line A1
j , the coarse moduli space of elliptic curves, together

with some stacky information. For j /∈ {0, 1}, the corresponding pointed elliptic curve has
precisely one automorphism given by negation. Therefore, points j /∈ {0, 1} are locally of
the form U/Z2, where Z2 acts trivially on U . For j ∈ {0, 1}, the automorphism groups are
larger and the stacky information is more complicated.

Fact 1.7. dim(Mg,n) = 3g − 3 + n.

2. Stable maps

We now want to pass to a setting where we consider stable curves inside an ambient space.

Definition 2.1. Let X be a variety. A stable n-pointed map to X is a map f : (C, x1, . . . , xn) → X
such that

• C is a (possibly reducible) proper, reduced, connected, algebraic curve with at most nodal
singularities;

• x1, . . . , xn ∈ C are pairwise distinct points not coinciding with any of the nodes;
• f has finite automorphism group.

Here, an isomorphism of n-pointed maps f : (C, x1, . . . , xn) → X and f ′ : (C ′, x′1, . . . , x
′
n) → X is

an isomorphism φ : (C, x1, . . . , xn) → (C ′, x′1, . . . , x
′
n) of n-pointed curves with f ′ ◦ φ = f .

For a homology class β ∈ H2(X,Z), we say that f represents β if f⋆([C]) = β, where [C] ∈
H2(C,Z) is the fundamental class of C. We can then consider the following moduli functor

S 7→


isomorphism classes of flat families C → S with sections
σ1, . . . , σn : S → C and a morphism f : C → X such that
f : (Cs̄, σ1(s̄), . . . , σn(s̄)) → X is a stable n-pointed map

of genus g representing β for every geometric point s̄ of S

 .

Again, this moduli functor is in general not representable by a scheme. Instead, there is a proper
Deligne–Mumford stack, denoted Mg,n(X,β) representing this functor. This time we are even a

bit more unlucky than before because Mg,n(X,β) is in general not smooth.

Example 2.2. Take the target space X = P2 and let [l] ∈ H2(X,Z) be the homology class of a
line. In the following we will denote the moduli space Mg,n(X, d[l]) simply by Mg,n(X, d).

(1) M0,0(X, 1) = (P2)∗

(2) M0,1(X, 1) = {(x, l) : x ∈ l} ⊆ P2 × (P2)∗
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(3) M0,0(X, 2) parametrises four different types of stable maps:
(a) C may be irreducible and f(C) is a conic
(b) C may be a union of two lines and f(C) a reducible conic
(c) C may be irreducible and f(C) is a double cover of a line
(d) C may be a union of two lines and f(C) is a double cover of a line
Stable maps of type (c) and (d) give stacky points as these have non-trivial automorphisms.

(4) Consider M1,0(X, 1): although there are no maps from an elliptic curve to P2 representing
[l], the domain can be reducible with C = C1 ∪ C2 where C1 is a P1 which gets mapped to
l and C2 is an elliptic curve or a nodal rational curve attached to C1 at one point; C2 gets
mapped to a constant. Therefore,

M1,0(X, 1) = M0,1(X, 1)×M1,1,

where the marked point corresponds to the point where C1 and C2 meet.

Ideally, we would like to define GW invariants by integration against the fundamental class of
Mg,n(X,β). Unfortunately, the moduli space might not have the “correct” dimension to yield a
meaningful counting. To remedy this problem, one constructs a virtual fundamental class

[Mg,n(X,β)]
vir ∈ Ad(Mg,n(X,β))⊗Q

where d is the expected (or virtual) dimension of Mg,n(X,β). The construction of virtual funda-
mental classes is quite involved and we will not describe it here, see [4, §4] for an exposition. The
idea is that locally the moduli space is cut out by equations coming from an obstruction space
inside a space coming from first order deformations. Let [f : (C, x1, . . . , xn) → X] ∈ Mg,n(X,β) be

a stable map and let I• be the 2-term complex I• := f∗ΩX → Ω1
C(

∑
i xi) ∈ Db(C), concentrated

in degrees −1 and 0. Then the infinitesimal deformations are given by

T[f ]Mg,n(X,β) = Ext1C(I
•,OC)

while the obstruction space is given by Ext2C(I
•,OC). Using Hirzebruch–Riemann–Roch Theorem,

one can then show that

vdim(Mg,n(X,β)) = dim(Ext1C(I
•,OC))− dim(Ext2C(I

•,OC))

= n+ (dimCX − 3)(1− g) +

∫
β
c1(TX). (♠)

Note that if X is a Calabi–Yau 3-fold, vdim(Mg,0(X,β)) = 0.

3. Gromov–Witten invariants

Given the moduli space of n-pointed stable maps of genus g representing β, there exist evaluation
maps

evi : Mg,n(X,β) → X for i = 1, . . . , n

evaluating a stable map at the ith marked point, i.e.

evi : [f : (C, x1, . . . , xn) → X] 7→ f(xi).

We also define

ev := ev1 × · · · × evn : Mg,n(X,β) → Xn.

Definition 3.1. For cohomology classes α1, . . . , αn ∈ H∗(X,Q) and β ∈ H2(X,Z), we define the
Gromov–Witten (GW) invariant

⟨α1, . . . , αn⟩g,β :=

∫
[Mg,n(X,β)]vir

ev∗(α1 × · · · × αn) ∈ Q.
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As usual, in this context the integral means taking the degree of the cap product. This integral
is only nonzero if the degrees of the homology and the cohomology class match; in this case, this
means that if αi ∈ Hdi(X,Q) then ⟨α1, . . . , αn⟩g,β ̸= 0 if and only if 2 vdim(Mg,n(X,β)) =

∑n
i=1 di,

i.e. by (♠)

2

(
n+ (dimCX − 3)(1− g) +

∫
β
c1(TX)

)
=

n∑
i=1

di. (♢)

Coming back to the very first sentence of this talk, the intuition behind GW invariants should
be that they count the number of curves of homology class β and genus g inside X passing through
Y1, . . . , Yn, where Yi is the submanifold Poincaré dual to αi.

Example 3.2. Let us look at the case X = P2 and genus 0; then M0,n(P2, d) is actually a smooth
DM stack for d ≥ 0 (and n ≥ 3 for d = 0) of the expected dimension. If α1, . . . , αn ∈ H4(X,Q)
are taken to be the Poincaré dual of a point [pt], it can be shown that the GW invariants actually
satisfy the intuition stated above, i.e. ⟨α1, . . . , αn⟩0,d[l] coincides with the number of rational curves

of degree d passing through n general points in P2 as long as this number is expected to be finite.
Equation (♢) tells us that this is precisely the case if 2(n− 1 + 3d) = 4n, i.e. n = 3d− 1.

(1) ⟨[pt], [pt]⟩0,[l] = 1 since there is precisely one line passing through two general points.

(2) ⟨[pt]5⟩0,2[l] = 1 since there is a unique conic passing through five general points in P2.

(3) The next GW number we want to compute is ⟨[pt]8⟩0,3[l]. A cubic curve in P2 is given by
the vanishing of a homogeneous polynomial of degree three

f = c0x
3 + c1x

2y + c2x
2z + · · ·+ c9z

3.

For generic coefficients, V(f) is smooth of genus one and is rational if and only if it is sin-
gular. The locus where V(f) becomes singular is given by the vanishing of the discriminant
∆(f), where

∆(f) = 19683c40c
4
6c

4
9 − 26244c40c

3
6c7c8c

3
9 + · · · − c22c3c

4
4c

3
5c

2
6

is a homogeneous polynomial of degree 12. Passing through a point in P2 imposes a linear
condition on the coefficients ci, and therefore ⟨[pt]8⟩0,3[l] = 12.

We will now list some important properties of GW invariants.

(1) Fundamental Class Axiom. If n + 2g ≥ 4 or β ̸= 0 and n ≥ 1, and [X] ∈ H0(X,Q) is
the fundamental class of X, then

⟨α1, . . . , αn−1, [X]⟩g,β = 0.

(2) Divisor Axiom. If n+ 2g ≥ 4 or β ̸= 0 and n ≥ 1, and αn ∈ H2(X,Q), then

⟨α1, . . . , αn⟩g,β =

(∫
β
αn

)
⟨α1, . . . , αn−1⟩g,β.

(3) Point Mapping Axiom. For g = 0, β = 0,

⟨α1, . . . , αn⟩0,0 =
{ ∫

X α1 ∪ α2 ∪ α3 if n = 3,
0 otherwise.

Note that this is not a complete list to define GW invariants in an axiomatic way, see [2].
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4. Descendent Gromov–Witten invariants

In the course of the reading group we will also need a slightly different version of GW invariants,
called descendent GW invariants, or gravitational descendent invariants. On Mg,n(X,β) there are
line bundles Li for i = 1, . . . , n whose fiber at a stable curve [(C, x1, . . . , xn)] is the cotangent
space mxi/m

2
xi

where mxi ⊆ OC,xi is the maximal ideal at xi. More precisely, let σi : Mg,n → Cg,n
denote the section of the universal curve corresponding to xi; then Li = σ∗i ωπ where ωπ is the

relative dualizing sheaf of the universal curve π : Cg,n → Mg,n. The psi classes ψi are defined as
ψi = c1(L1).

Definition 4.1. For classes α1, . . . , αn ∈ H∗(X,Q), β ∈ H2(X,Z) and non-negative integers
p1, . . . , pn ∈ Z≥0, the descendent Gromov–Witten invariant is defined by

⟨ψp1α1, . . . , ψ
pnαn⟩g,β :=

∫
[Mg,n(X,β)]vir

ψp1
1 ∪ · · · ∪ ψpn

n ∪ ev∗(α1 × · · · × αn) ∈ Q.

Similar to (♢), this expression is only non-zero if

2

(
n+ (dimCX − 3)(1− g) +

∫
β
c1(TX)

)
=

n∑
i=1

di +
n∑

i=1

2pi.

Example 4.2. Even for target space X = P2 and genus 0, descendent GW invariants can take
non-integral values, e.g. ⟨ψ4[pt]⟩0,2[l] = 1

8 . This number will probably be computed in a later talk
using tropical geometry.

There exist generalisations of the properties listed in the previous section to descendent invari-
ants.

(1) Fundamental Class Axiom. If n + 2g ≥ 4 or β ̸= 0 and n ≥ 1, and [X] ∈ H0(X,Q) is
the fundamental class of X, then

⟨ψp1α1, . . . , ψ
pn−1αn−1, [X]⟩g,β =

n−1∑
i=1

⟨ψp1α1, . . . , ψ
pi−1αi, . . . , ψ

pn−1αn−1⟩g,β

where we use the convention that an invariant on the RHS is zero if ψ appears with a
negative power.

(2) Divisor Axiom. If n+ 2g ≥ 4 or β ̸= 0 and n ≥ 1, and αn ∈ H2(X,Q), then

⟨ψp1α1, . . . , ψ
pn−1αn−1, αn⟩g,β =

(∫
β
αn

)
⟨ψp1α1, . . . , ψ

pn−1αn−1⟩g,β

+
n−1∑
i=1

⟨ψp1α1, . . . , ψ
pi−1(αn ∪ αi), . . . , ψ

pn−1αn−1⟩g,β,

where we use the same convention as above.
(3) Point Mapping Axiom. For g = 0, β = 0 and n ≤ 3,

⟨ψν1α1, . . . , ψ
νnαn⟩0,0 =

{ ∫
X α1 ∪ α2 ∪ α3 if n = 3 and ν1 = · · · = νn = 0,
0 otherwise.

There is another important property we only see in the descendent case:

(4) Dilaton Axiom.

⟨ψ[X], ψp1α1, . . . , ψ
pnαn⟩g,β = (2g − 2 + n)⟨ψp1α1, . . . , ψ

pnαn⟩g,β.
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